

COLONEI. MAURTCF OCONNOR TANDY. D S O. OBE RE.
TITETOTO GEOTEITC BRANCH. SURVEY OF INDLA, 1925-28.

Colonel Maurice O' Connor 'Tandy., d.s.o., o.b.e., r.e.

Col. M. O'C. 'landy, whose portrait forms the frontispiece to this volume, was commissioned in the Royal Engineers in July 1893, and after six years military duty he joined the Survey of India at Dehra Dün. In 1901 he was placed on deputation as Survey Officer with the Aden Boundary Commission, on the completion of which he served with the Foreign Department in Simla for 6 months, and returned to the Survey of India in 1905, when he ras employed on topographical surveys in the Punjab. From April 1907 he held charere of the Calcutta Drawing Office for $4 \frac{1}{2}$ years, where his work in organizing the new system of mapping, and putting the Map Record and Issue Office on a satisfactory footing, was of permanent value to the Department.

On the outbreak of war he reverted to military duty and was wounded at Loos. After having some connection with the preparation of the first tanks he was transferred to Mesopotamia, where he remained until the end of the war, receiving the D.S.O., and O.B.E. He was again employed on military duty during the Aforhān War in 1919.

From 1920 to $19: 25$ he was employed in topographical surveys in the Southern Circle, interrupted by a period of 6 moriths as Director, Frontier Surveys, arranging preliminaries for the creation of the new Frontier Circle.

The last post which he held in India was that of the Director of the Geodetic Branch from November 1925 to June 19.2. Although Col. Tandy had had no previous connection with the Geodetic Branch, he was able to effect many beneficial changes in organization, especially in that part of the branch connected with printing and publication. His wide topographical experience was also of value in connection with liaison between the geodetic and topographical branches, and in rendering data accumulated by one readily accessible to the other. He inaugurated the (ieodetic Branch Museum, in which are placed many of the thendolifes and other instruments used in the early years of the 'rigonometrical Survey. Two photographs of this Museum appeared in the Geodetic Report Vol. IlI.

Col. Tandy was an officer who earned the full confidence and respect of those serving under him, and was at his best when faced with difficulties, which gave scope to his energy and organizing ability. He rendered many valuable services to the Department and the State, in improving the methods of work, and set a grood example by personal devotion to duty.

IIe retired in December 1928, with the sincere good wishes of his friends in all ranks of the Department, having previously been appointed Lecturer in Survey at the University of Oxford.

GEODETIC REPOR'T

VOL. IV

From 1st October 1927 To 30th September 1928

PUBIISHED BY ORDFR OF
BRIGADIER R. H. THOMAS, D.S.O.
surveyor general of india

Printed at the grodetic branch office, SURVEY OF india, dehra dūn, 1929.
Page
Colonel Maurjee O' Connor 'Tandy, d.s.o., o.b.e., r.e. i
Introduction and Summary ix
Chapter I
Computations and Publication of data
(i) General
Para

1. Dr. Hunter's address at the Indian Science Congress, 1928 1
(ii) Computations
2. Plamb-line deflections referred to the International Spheroid 3
3) Adjustment of triangulation 3
1. Astronomical 3
©. Traverse 4
2. Char showing Hayford deflection anomalies in India 4
i. Lambert's Orthomorphic Projection 4
3. Suitability of Professional forms for machine compu- tation 4.
4. Old records 小
5. Chart showing extreme errors of beight in the Indian triangulation 4
(iii) Publication of data
6. Auxiliary Tables 5
i:. lield Traverse Tables 5
7. Forms 5
8. 'Iheodolite resection 5
li. Levelling pamphets 5
9. Triangulation pamphlets 6
1i. Goolletie Reports 6
10. Miscellaneous publications 6
11. Computing Office Drawing Section 6
12. Supply of data 6ParePage
Chapter II
Observatories
13. Summary 7
14. Time observations 7
15. Reception of wireless time signals 8
16. Latitude observations 8
17. Standards of length 9
18. Hunter Short Base 9
19. Seismograph observations 9
20. Meteorological observations 10
21. Pendulum observations 10
22. Maintenance and examination of delicate scientific instruments 10
23. Course of instruction for the Upper and Lower Subordinate Computers of the Computing and Tidal Party 11
1き. Miscellaneous experiments 11
24. Magnetic observations 11
Chapter III
Tides
25. 'Tidal observatories 29
26. Inspections 31
27. 'Tidal observations in the Rangoon river 32
28. Reduction of Bassein tidal observations 32
b. Corrections to predictions 34
f. Basrah 34
29. Tide-tables 35
30. Accuracy of predictions 35
Chapter IV
Gravity and deviation of the vertical
31. Pentitum Apparatus of the Survey of India 48
32. Desaription of the Survey of India Cambridge (1926) apparatus 49
33. Ohservations :0
t. Sway mormetinn 51
34. Peniluhms of the Survey of India i)
35. Description of the Survey of India Cambridge (1926) pendinlums 1
36. Adjuating the length of the pendulums 52
37. Determination of enrection factors 22
38. Keducel time of vibration at Cambridge and docluced value of gravity at Dehra Dūn 53
39. Obeperver 54
40. Wireless receiving set 54
Para Page
41. Field Season 1927-28 54
42. Strength of party, transport and health 56
1.1. Clock rates 56
43. Pendulum results 57
44. Astronomical observations 57
45. Results 57
Chapter V
Triangulation
46. General 68
47. Personnel 68
48. Triangulation 68
49. Computations 70
Appendix-Field performance of $3 \frac{3}{4}$-inch Wild Theodolite 70
Chapter VI
Levelling
50. Organization 75
51. Summary of out-turn 76
52. Work of detachments 76
53. Discussion of results 79
54. Probable errors 82
55. Progress of the new level net 83
56. Research work 83
List of Publications of the Survey of India 119
Charts and plates
Portrait Colonel Maurice O’Connor Tandy, d.s.o., o.b.e., R.E. Frontispiece
Chart I. Chart showing estimated maximum discrepancy between Trigonometrical and spirit-levelled heights. 4
Chart II. Latitude stations 48
Chart III. Pendulum stations 48
Chart IV. Telegraphic Longitude stations 48
Chart V. Observations for gravity and plumb-line deflections in Baluchistan and Sind 57
Phate VI. The Survey of India, Cambridre (1926) Pendu- lum Apparatus (without cover) 49
Plate VII. Detail of Cambridge (19:0) Pendulum (${ }^{\text {Poll size }}$) 31
Plale VIlI. The Wircless Receiving Apparatus al
Pate IX. Mul voleano in the Haro Range, Las Belas state is
Plate X. Scene in the Haro Range, Las Bela State it
Plate XI. Hamun.i-Mankel, Jooking sonth from the esrarpment 5
Plate XII. The Kalandi oasis, Hāmunn-i-Māshkel 5.5

Chart XIII. Triangulation series and Azimuth stations ... 68
Plate XIV. Wild universal $3 \frac{3}{4}{ }^{\prime \prime}$ 'Theodolite 70
Chart XV. Lines of Precise Levelling and 'Lidal stations ... io
Chart XVI. Index to 'Triangulation pamphlets (India and Burma) ... at the end
Chart XVII. Index to 'Triangulation pamphlets ('Irāq, Persia and Afghānistān)
at the end

INTRODUCTION AND SUMMARY

During the year 1927-28 geodetic and other work was continued at Dehra Dūn, and three field parties were engaged on gravity work, triangulation and levelling respectively.

In the Computing Section all deviation of the plumb-line results have been expressed in terms of the International Spheroid (I, 2). A chart has been produced showing what discrepancies between heights found by spirit-levelling and triangulation are likely to be met with in various parts of the Indian Survey (I, 10).

Work in the Observatory Section has been increased by periodic pendulum observations, taken with a view to ascertaining what variations in q, real or apparent, occur at this base station (II, 9). Regular latitude observations have also been begun (II, 4). Time observations have been continued as usual, and the time signals of Bordeaux and Rugby have been received on most days. The apparent variations in the longitude of Dehra Dūn, resulting from these, are exhibited in tables. Results for each month are meaned and exhibit considerable variations, but not such that cannot be attributed to observational error.

The normal tidal prediction work and inspection of tidal observatories have been carried out (III). The Observatory of Basrah was inspected by the Survey of India for the first time. Basrah tidal predictions have not been satisfactory, and a serious attempt to improve the prediction table has been made (IIJ, 6). Recent tidal observations at Bassein have been harmonically analysed (III, 4.).

A description is given of the new pendulum apparatus (IV, 2,6) as well as a brief account of its predecessors (IV, 1,5). The high degree of iwechronism of the new pendulums is due to Major E. A. Glennie, and las enabled swings of very long duration to be made with pairs of penhinims (IV, $)$. This, with wireless reception of European time signals hy a convenient set just obtained (IV, I]) has much reduced the labour of observation.

Major Glennie gives an interesting account of the regions in which this season's work has been done, viz. Las Bela State, Sind, Baluchistän alongr the Nushki-Duzdáp railway, and Hāmūn-i-Mãshkel neighbourhood (IV, 12). No outstanding anomalies of g were revealed.

In addition to the pendulum work, observations with a large prismatic astrolabe were made, which will yield deflections; but the computations had not been completed at the time of going to press (IV, 17).

At the end of the chapter (IV) there is a comprehensive list of results of all (166) modern gravity stations of the Survey of India, followed by a similar list of the stations of the de Filippi Kara-koram Expedition of 101t, and of Dr. Vening Meinesz's submarine determinations in the neighbourhood of India.

Trianculation of secondary precision was executed on the N.W. Frontier by Capt. G.H. Osmaston using a small Wild theodolite (V). He qives an appreciative account of this instrument (V. Appendix). In view of the unsettled nature of the country, work of this class would not have been possible with the older type of theodolite, as stations could only be occupied for short periods by day.

The levelling party has now been relieved of the tertiary levelling work (for industrial purposes) which it undertook in previous years, and can now devote its attention to precision work (VI, l). Some interesting changes of level have been found at Ambāla and Dehra Dūn (VI, 4). There is also a description of the country in the Rann of Cutch indicating the difficulties of levelling there. A gap of 30 miles in one of the levelling circuits still remains to be done across the Rann on account of these difficulties: and work can only be completed when conditions are more favourable. A favourable opportunity is now awaited.

The total number of miles of levelling of the new level net completed in both directions now amounts to 5,326 (VI, 6). High precision levelling of 1,200 miles in one direction, and 1,000 miles of double levelling of secondary precision were accomplished (VI, 2).

There are important and interesting notes due to Captain Bomford on three difficulties in levelling, (1) Crossing of wide unbridered rivers, (b) Levelling up persistent slopes, (c) Pairing of staves (VI, 7). Rules are wiven for the r ruidance of observers.

The Groletic Branch has not ret reached its full pre-war strensth and the Astrommical Party (No. I3) did not take the field. It is hoped that it will be possible alter a vear or two to send out the party for determination of deflertions in longitude. The personnel of the Geodetic Branch is civen on the following pages.

DEHRA liデ.)

J. de Gratff Hunter, Director of the Gieordelic Bromeh.

PERSONNEL* Or THE GEODETIC BRANCH, 1927-28 Director, Geodetic Branch

Lt.-Colonel R. H. Phillimore, d.s.o., r.e., from 7th November 1927 to 28 th ,Jane 1928. Dr. J. de Graaff Honter, m.a., Sc. D., F. Inst. P., from lst Oct. 1927 to 6th Nov. 1927 and from 29 tb June to 30 th September 1928.

COMPDTING AND TIDAL PARTY

(Records and Rebearch)
Class I Officers.
Dr. J. de Graaff Hunter, m.a., sc. D., F. Inst. P., in charge from 7th November 1927 to 26th Febrnary 1928.
Major O. M. Thompson. I.A., in charge from 23 rd April to 30 th September 1928.
Major E. d. Gilennie, D.s.o., R.E., in charge from 19th April to 22nd April 1928.
Captain G. Bomford. n.e., in cbarge from Ist October to 6th November 1927 and from 27th February to 18tb April 1928.
Mr. B. L. Gulatee, M.A. (Cantub), from lst October 1927 to 31st August 1928.

Computing Section.
Upper Subordinate Serice.
Mr. M. Acharya.
", R.C. Ray.
" M. Chatterjec.
, S. Mitra.
, 'I'.N. Sharma, B.A.
, A.K. Maitra, B.f.
, R. K. Bhattacharya, B.A.
, C. B. Madan, B.A., Geodetic Computer.
Lower Subordinate Service.
5 Computers.
'I'idal SEction.
Chass II Officers.
Mr. D. H. Luxa, 'liclal assistant, from lst October litit to 19th April 1928.
Mr. R. B Matimr, B.A., Titial assistant, from 20th Λ_{p} il to 30th September 1928.

Lower Sillordinate Service.
11 Computers.

> Ohaberatony Section. Ciass $I I$ Officers.

Mr. I. B. Mathur, 1s.a.. from 1st October 1927 to 30th September 1928.
Mr. P. K. Gbosh, 1 A . (Cantab), from 1st October 1927 to 31st August 1928.
Mr. Abrhil Karim, is a., from 1st November 1927 to 2 th Λ pril 1928.

Upper Sulordinate Service.
Mr. H.C. Bancrjea, n.A., from lat to 7 th October 1927 and from Ist A pril to 31st August 1928.
Mr. M. C. Deb. h.A., from lst October 1927 to 30th September 102 N .

Mr. P. K. Chowdhury, from 21st Augast to 30th September 1928.

Lower Subordinate Service.
6 Computers.
Magnetic Observatory.
Mr. K. N. Mukerji, m.A.
1 Computer.
Office and P. \& M. Section.
Upper Subordinate Service.
Mr. B. B. Lal.
Lower Subordinate Service.
2 Computers \& 2 Clerks.
Drawing Section.
Mr. Faiz-Ullah \& 5 Draltsmen.
14 PALTY (PENDULUM).
Class I Officers.
Major L. A. Gleunie. D s.o. R.E., in charge from 7th Oct. 1927 to 30th Sept. 1928.

Class II Officers.

Mr. C. West, in charge from 1st October to 6th October 1927.
Mr. Abdul Karim, B.A., from 1st October to 31st October 1927.

Lower Suhurdinate Service.
4 Computers etc. 15 PARTY (TLIANGULATION).

Class I Officers.
Major E. A. Glennie, D.s.o., R. E.. in charge from 5th May to 31st May 102 s .
Captain G. H. Osmaston, m.C., R.E., in charge from lst October 1927 to 4 th Mav 1928.
Mr. B. L. Gulatee, m.A. (Cantab), from Ist September to 30th september 1928.

Class II Offeers.
Mr. A. M. Talati. L c.e., iu cbarge from 1st June to 30 h september 1928 .
Mr. P. K. Ghosh, na. (Cantab). from lst, September to 30th September 1928.

Crpper Subordinate Serrice.
Mr. H. C. Bancrica, M.A., from 1st september 1928.
Mr. L. R. Howart, from 21st. August 1928.
Lower Subordinate Service.
4 Computers ete

[^0]17 PARTY (LEVEILING)
Class I Officers.
Dr. J. de Graaff Hunter, M.A, sc. D., F. Inst. P., in charge from 27th Jane to $29 t h$ June 1928.
Cantain (i. Bomford. R.e., in charge from 7 th November 1927 to 26th February 1928.

Class II Officers.
Mr. N. R. Mazumdar. irom lst October 1027 to 30 th september 1928 ; in charge from lst October to Gth November I 927 and from 27th February to $\because 6$ th June 1928 and from 99 th June to 30th September 192s
Mr. Abelul Karim, n.A, from 28th April to 30th september 1928.

Crpper Subordinate Service.
Mr. K. K. Das, b.A., Ist October 1927 to :3st March 1928.
Mr. I. D. Joshi.
Mr. P. B. Roy. up to Ist May 1928.
Mr. A. A. S. Matlib dhmad up to 6th May $19: 5$.

Mr. H. C. Banerjea, i.A.. from 8th October 1927 to 3lst March 1928.
Mr. Lalbir Singh np to 16th April 1928.
Mr. Abdul Majid from 10th August 1928.
Mr. J. N. Kobli.
Mr. B. P. Randev
Mr. Mnhammad Faizul Hasan from 1st March 1928.
Mr. I. D). Suri, from 21st August 1926.
Lower Subordinate Service.
21 Compaters etc.
13 Levellers etc.

IRAINING SCHOOL

Class $I I$ Officers.
Mr. S. F. Norman, Survey Instructor, from 8th October to 15 th Decomber 1927 and from 16th January to 30tb September 1928.
Mr. C. West. Survey Instractor, from 16th December $192 \bar{i}$ to 15 th January 1928.

Chapter I

COMPUTATIONS AND PUBLICATION OF DATA

by Major C. M. Thompson, i.a.

(i) General

1. Dr. Hunter's address at the Indian Science Congress, 1928.-This year Dr. Hunter had the honour of being elected President of the Mathematics' and Physics' Section of the Indian Science Congress which met in Calcutta in January 1998. The subject discussed by him in his presidential address on this occasion was the "Figure of the Earth ". The address comprised a brief résumé of the gradual improvement in knowledge of this subject from the earliest times to the present day. In ancient times scientists held the view that the earth was a sphere, though the popular and more orthodox idea was that it was flat. There was but little advance on these conceptions until Newton by his laws of gravitation established that the figure of the earth was an oblate spheroid. Since then the controversy has mainly centred round the numerical exactitude of the elements of the figure or earth constants i. e.:-of the length of the semi-major axis a, and of the flattening f. Laplace in 1799 derived the values, $a=6376 \cdot 34 \mathrm{~km}$., $1 / f=312 \cdot 2$. Thirty years later Sir George Everest obtained his values of the elements, $a=6377.276 \mathrm{~km} ., 1 / f=300 \cdot 8$ from the reduction of part of the Great Are of the meridian in India. Bessel in 1841 and Clarke in 1857 introduced firther improvements in the results. In 1863 Archdeacon Pratt of Calcutta made a determination of the earth constants by applying compensation for the effects of Himalayan altraction. Of recent years the idea of compensation has been more fully developed and presented as the theory of isostasy by Mr. John Hayford of the U. S. Coast and Geodetic Survey. In 1909 he applied his theory of isostasy to derive a value of the elements of the earth's figure from observations in the United States. The values, $a=6378 \cdot 388,1 / f=297 \cdot 0$, found by Hayford, were adopted for the International Spheroid in 1924 by the International Union of Geodesy and Geophysies, though the wisdom of their choice was not admitted by all concerned. The view has been emphasized in the address, that the Hayford Spheroid does not fit in well wilh the conditions in India, and that for a figure of reference it is sulficient to select a spheroid correct to the nearest 100 metres in 11 and to one unit in $1 / f$. A value of 295 appears to be about the best compromise among the various values found for $1 / f$. Such a figure would serve astronomical purposes well. For geodetic needs and the study of
crustal anomalies either this or the best local spheroid might be used. The full text of the address has been published by the Asiatic Society of Bengal, Calcutta. The table, which follows, gives the elements of the earth's figure as determined up-to-date by various authorities.

TABLE 1.-Values of a and $1 / f$ found from triangulation.

Year	Author	a in km	$1!f$	Data used
1799	Laplace	6376-34	312.2	Arcs: European, Peruvian, African, American.
1830	Everest	$7 \cdot 276$	$300 \cdot 80$	Indian and French ares.
1830	Airy	6. 542	$299 \cdot 33$	14 meridiun and 4 parallel arcs.
1841	Bessel	7-397	$299 \cdot 15$	10 meridian arcs.
1863	Pratt	8-297	295-26	Arcs: Anglo-Gallic, Russian, Indiau.
1857	Clarke I	$8 \cdot 345$	294.26	Arcs: Anglo-Gallic, Rossiun, Indiun. Prussian, Peruriun, Hanoverian. Danish
1866	Clarke II	8.258	204-98	Ares: Anglo-Gullic, 2nd Indian, Russian Peruvian, Cape.
1880	Clarke III	8-301	293.47	Above reconsidered.
1909	Haytord	8-388	$\begin{array}{r} 2970 \\ \pm .5 \end{array}$	U.S.A. only on basis of isostatic compensation.
19:27	$\begin{array}{cc} \begin{array}{c} \text { Survey of } \\ \text { India } \end{array} & \\ \hline \end{array}$	6378-508	202.4	Geoid in India only.
$19 \% 7$., 11	$8 \cdot 516$	292.6	Geoid in India with isostatic compensation.
1927	, 111	4.213	$293 \cdot 6$	Geoid in U.S.A. only.
1927	,. IV	$8 \cdot 354$	$297 \cdot 7$	Geoid in U.S A. with isostatic compensation.
1927	, $\frac{1+111}{}$	$8 \cdot 368$	2936	Geoid in Iudiu and U.S.A.

TABLE 2.-Values of $1 \mid f$ from pendulum results and corresponding faclurs in formulu for $g=G\left\{1+A \sin ^{2} \phi-B \sin ^{2} 2 \phi+C \cos ^{2} \phi_{1} \cos 2\left(\lambda-\lambda_{0}\right)\right\}$.

Iear	Aithor	11	G	$10^{\text {i }} \mathrm{A}$	$10^{6} \mathrm{~B}$	$10^{6} \mathrm{C}$	$\left(\begin{array}{c} h_{0} \\ \left(+\mathrm{e} \mathrm{e}^{2}\right. \text { when } \\ \mathrm{E}) \end{array}\right.$
1901	Helmert I	298. 3	978.030	5302	7	0	...
1915	In. II	$2966.7 \pm 0 \cdot 4$	978.052	5285	7	18 ± 4	$17^{\circ} \pm 6 \mathrm{~W}$
1917	Bowie	297.4 $\pm 1 \cdot 0$	974.039	5294	7	0	...
1926	Heiskauen	$\begin{aligned} & 99+3 \text { in } 18^{\circ} \mathrm{F} . \\ & 299.0 \text { in } 72^{2} \mathrm{~W} . \end{aligned}$	5154.052	$5 \underline{5} 5 \pm 6$	7	27 ± 3	$18^{\circ} \pm 5 \mathrm{E}$.

* This implies a difference of 34 metres in semi-erfuatorial axes. The major axis is in longitude $15^{\circ} \mathrm{E}$.

TABLE 3.-Values of $1 / f$ from lunar obscrvations.

Year	Anthor	$1 / f$	Method
1899	Darwin	296.4	Precession
1914	Brown	$293 \cdot 7$	Lanar theory
1914	Crommelin	294.4	Moon's parallax
1924	Spencer Jones	$\begin{aligned} & 294 \cdot 8 \pm \cdot 2 \\ & 294 \cdot 9 \pm \cdot 3 \end{aligned}$	Moon's perigee Moon's node
1924	de Sitter	296.92土 ' 14	Precession

(ii) Computations
2. Plumb-line deflections referred to the International Spheroid.-The deflections of the plumb-line in India both in meridian and prime vertical have already been computed with reference to the Everest and Helmert Spheroids, and included in Professional Paper No. 16., Table XCV. Their recalculation with reference to the International Spheroid has been partially completed. The divergences of the Everest from the Internatioual Spheroid, viz, $\delta a=+1 \cdot 112 \mathrm{~km}$. and $\delta \delta=+0.834 \mathrm{~km}$. have been taken into account in the calculation. The geoid in India has been found to coincide most closely with the International Spheroid with the deflection at Kaliānpur $3^{\prime \prime} \cdot 02 \mathrm{~S}$. and $3^{\prime \prime} \cdot 17 \mathrm{~W}$. To bring Table XCV of Professional Paper No. 16 up-todate, it has been extended to include all deflections observed up to 1927. These addenda to Professional Paper No 16 will be published in due course.
3. Adjustment of triangulation.-28 charts for the graphical adjustment of minor triangulation on the North-West Frontier were completell and supplied to the Director Frontier Circle during the year. For a description of the method of adjustment vide Geodetic Report Vol. III, Chap. II. § 4.

The triangulation carried out in 'Iraq during the Great War (1914-1918) was in many disconnected portions. The various series have now been harmonized by a method of rapid adjustment and the whole of the triangulation brought into terms of the co-ordinates of l'ão, vi\% latitude $29^{\circ} 58^{\prime} 23^{\prime \prime}$, longitude $48^{\circ} 28^{\prime} 55^{\prime \prime}$. This point was selected as its position was well fixed in comection with the TurcoPersian Boumlary Commission, its latitude being astronomically determined by observations to Polaris and its longitude electro-telegraphically connected with Bushire, a main longitude station between England and India.
4. Astronomical.-The astronomical latitudes observed prior to 1885 and published in G. T. S. Vols. XI and XVIII were not corrected for the height of stations above mean sea-level. The height corrections for all the stations have now been computed by the formula,

- $000052 h \times \sin 2 \lambda$, where h is the height in feet above mean sea-level and λ the latitude of the station, and the corrected values of the latitudes incorporated as addenda to the above volumes.

The times of sunrise and sunset for Calcutta were computed for inclusion in the Tide-Tables for 1929. They were also computed for Benares in compliance with an extra-departmental request.
5. Traverse.-A large number of traverse co-ordinates and azimuths were computed to assist No. 20 Party (Cantonment and Special Survey) which lacked personnel to complete this work. The computations of co-ordinates were effected by means of a comptometer.
6. Chart showing Hayford deflection anomalies in India.-An attempt was made to show the Hayford anomalies in meridian deflection, obtained from the observations in India, graphically on a chart. The data were taken from Professional Paper No. 13 and from the observations in Kashmir, 1925-26. The attempt had to be abandoned, the anomalies being too irregular to admit of reliable curves being traced.
7. Lambert's Orthomorphic Projection.-Pending the decision of the question of changing the origin of projection to latitude $32^{\circ} 30^{\prime}$ and the limiting parallels of the grid to latitudes $28^{\circ} 30^{\prime}$ and $36^{\circ} 30^{\prime}$ (vide page 2 of Geodetic Report Vol. II), a request was received from the Director Frontier Circle to show the corners of sheets 30, 000 by 40,000 yards on an index map of the Frontier Circle on the altered projection. Necessary computations were carried out and the gridded index supplied to the Director.
8. Suitability of Professional forms for machine oomputation.-Trial computations were made to see whether any gain in time could be effected by machine computation on the minor Topo., Trian. and Trav. forms of the department. It was found that all the calculations, with the exception of those for traverse co-ordinates (northings and eastings), were not suitable for machine computation and the deductions could be carried out more expeditiously with log tables on the pxisting forms than on the machine.
9. Old records.-The old manuscript records preserved in the Computing Office, which are mostly connected with the simultaneous reduction of the Indian triangulation, are being examined with a view to their re-arrangement. In the course of this examination some valuable papers, previonsly unnoticed, on the solution of certain complicated problems relating to the simultaneons reduction have come to light and are now being recorded for future reference.
10. Chart showing extreme errors of height in the Indian triangulation.-This chart which was mentioned in last year's report as under preparation, vide page 27, Geodetic Report Vol. III, has been completed, and appears opposite. It exhibits the estimated extreme errors in trigonometrical heights that are likely to be met with in each degree sheet.

(iii) Publication of data

11. Auxiliary Tables.-The stock of Part III, Auxiliary Tables 1923 being exhausted, an enlarged edition of this part has been published. Six new tables, including those for the computation of grid co-ordinates on the Lambert projection, and two sets of star charts, one for latitude 15° and the other for 30°, have been added.

Part IV of the Auxiliary Tables is under compilation. About a third of the tables has been completed.
12. Field Traverse Tables.-These tables, which formed appendices to Topo. Chap. 1V., 1924, have been revised and printed as a separate pamphlet for the convenience of traverse computers and surveyors.
13. Forms.-The following new forms were published during the year. The Computing Section merely advised on some points in connection with the preparation of these forms, which were prepared by the parties concerned:-

13, 14 Pend., 24, 25 Trian., 9 Tid. Pred., 15 and 16 Lev.
14. Theodolite resection.-A pamphlet, explaining the various problems in theodolite resection, has been compiled and printed as an addendum to Topo. Chap. VII., 1925. Semi-graphic methods are illustrated by means of two diagrams and sample computations both in spherical and rectangular data.
15. Levelling pamphlets.-The following have been published: - (i) An addendum to levelling pamphlet for Sheet 73 revised up to 1926 .
(ii) The data of the following lines of high precision levelling for insertion as loose pages in appropriate pamphlets:-

151 (Rāniganj to Dinājpur) 1924-26. Bench-marks in sheet 73 M . only.
101 (Jacobābād to Khānpur)) 1924-26. Bench-marks in shcet 39.

105 (Khānpur to Jhang).
57A (Ferozepur to Ahmadäbäd).
102 (Khānpur to Mãrwār Pāli).
(iii) Pamplilets containing following lines of secondary precision:Lines 70 E to $70 \mathrm{~J} \& 70 \mathrm{M}$
," 74. C to $74 . \mathrm{H}$
" 77 Q\&77R
," 87 A to 87 D
," 88 B to 88 F
", 89 A to 89 F
", 90 A to 90 E
Pamphlets containing lines 52 A to 52 H have been reproduced by (restetner. Revised editions of Kevelling pamphlets for sheets 53 (1920) and 54 (1921) are at press. Press copy for revision of pamphlet for sheet i2 has also been completed.
16. Triangulation pamphlets.-Triangulation pamphlets for Bhatãn, the Andaman Islands, the Nicobar Islands, and Aden, comprising 41 degree sheets, and two pamphlets for 'Irāq have been published. Triangulation data for 33 degree sheets for new pamphlets, and 11 degree sheets for aldenda to old pamphlets have been compiled. 31 triangulation pamphlets, covering 52 degree sheets, have been republished by photozincography to meet shortage of stock.
17. Geodetic Reports.-Volumes I and II of the Geodetic Reports have been published, and Volume III is at press. The first chapter of this volume which contains the results of the observations at Dehra Dūn in connection with the International Longitude Project was printed in advance and submitted to the couference of the International Union at Leyden, which Captain G. Bomford, r.e. attended in July 1928.
18. Miscellaneous publications.-(i) Distribution list.A comprehensive distribution list has been compiled and Gestetnered in order to facilitate the distribution of geodetic publications in futures.
(ii) Booklet of instructions with descriptions and tables for the Hunter Short Base.-This booklet was compiled by Major C. M. Thompson from notes by Dr. Hunter and Major Glennie in a form suitable for issue with the Hunter Short Base Line Sets to R. A. Survey sections, or Survey units in the field. (cide also Chap. II §6). The book was reproduced by photozincography from typescript.
(iii) Investigations regarding Gravity and Isostasy by W. Heis-kranen.- The rough translation of part of this publication of the Finnish (ieodetic Institute (Helsinki 1924) was made from the German by V. Pelts Esq. The translation has been entirely revised and completed by Major Thompson and reproduced, mainly by Gestetner, for departmental use.
19. Computing Offlce Drawing Section.-A small drawing section consisting of six draftsmen under Surveyor Faiz-Ullah was formed and attached to the Computing Office to expedite the preparation of triangulation charts for the pamphlets, charts for the Geodetic Report etc., and to carry ont other plotting and drawing work in connection with the work of the Computing Office. This section has proved very useful, and, since it* formation two sets of star charts consisting of 8 pages each and 17 charts, including those for the Geodetic Report Vol. II, have been completer. 3:3 other cases were also dealt with, for which miscellaneons figures, diagrams and plans had to be prepared.
20. Supply of data. - About 450 requisitions for data were reseived from departmental and extra-departmental sources during the year. Some of these were met by the supply of printed publications, while for others data had to be extracted from manuscript records. in many cases computations were necessary before the data conld be compilenl.

Chaptier II

OBSERVATORIES

by Major C. M. Thompson, i.a.

1. Summary.-'The principal work of the observatories consisted of :-
(l) regular time observations and reception of wireless time signals for determination of longitude variations.
(2) latitude observations.
(3) comparison of standards of length.
(4) seismograph and meteorological observations.
(5) pendulum observations.
(6) maintenance and adjustment of delicate scientific instruments stored in the Geodetic Branch.
(7) professional instruction to Upper and Lower Subordinate Computers of the Computing \& Tidal Party.
(8) miscellaneous experiments.
(9) magnetic observations.
2. Time observations.-The large astrolabe, which was used in addition to one of the transits for time observations last season, was taken to the hield by No. 14 Party. Consequently the regular bi-weekly time observations were made by one of the transit instruments only. The rates of the Riefler Clock, as derived from these, are given in Table 1, which also shows the changes of pressure and temperature in the clock room for the period under review. It will be noticed from the table that during the hot months it becomes almost impossible to maintain the temperature of the cell at a standard of $80^{\circ} \mathrm{F}$., as the temperature during even the coldest hours of night in the hot season hardly drops to the standard, and so the temperature rises gradually as the hot season advances. It is proposed now to work the automatic temperature control at $83^{\circ} \mathrm{F}$. 'This control has worked satisfactorily except for a break-down of the excavating fan during the winter, fortunately at a period when it was least required. The pressure of the clock was adjusted on four different occasions daring the year. The errors of the clock as derived from observations by the transits are given in Table 9.

Correct time, for which there is a growing demand in the station, is telephoned on every working day to many of the local Government offices, and for convenience a telephone was installed in the Hennessey observatory in June 1928 for this purpose. A proposal was also made to broadcast time to Dehra Dūn and Mussoorie, through the Electrical

Department, which would arrange to give the daily time signal by lowering the lights for an instant at $9 o^{\prime}$ clock every night. The scheme, however, cannot be brought into force till that department is in a position to install the necessary apparatus to effect this.
3. Reception of wireless time signals. - The $8^{\mathrm{h}} 01^{\mathrm{m}}$ G.M.T. radio signals from Bordeaux were listened for daily, and received, except when atmospheric disturbance and other causes intervened. In addition to these the Rugby $10^{\mathrm{h}} 00^{\mathrm{m}} \mathrm{G} . \mathrm{M} . \mathrm{T}$. time signals were picked up daily since January 1928, the latter service having been inaugurated since 19th December 1927. The longitude values and divergences of these results since December 1926, from the value derived from the Longitude Project of October and November 1926, are given in Tables 3 and 4 , the latter embodying the values derived from both the wireless signals. Monthly means are given in Table 5. The published corrections to the times of emission have been included as given in the Admiralty Notices to Mariners, and in the Bulletin horaire (demi-definatif).

The dry high tension batteries of the wireless set having run down after about 2 years' service, accumulators of a more durable type were substituted in August 1928 and it is expected that these will prove more useful. It is proposed to purchase a good type of rectifier to keep these accumulators charged. The present one has often proved troublesome in use.
4. Latitude observations.-The old zenith telescope No. 1 by Messrs Troughton and Simms, London, as well as the new and larger instrument by Messrs T. Cooke and Sons, London, have been installed in the reconstructed Haig observatory on two pillars built on the meridian of the Haig observatory, Dehra Dün, mentioned on page 15 of triangulation pamphlet for sheet 53 J . The former telescope, which has been in use for about 40 years in the department, was overhauled and repainted before installation. The values of the two levels attached to this telescope were redetermined in July 1928, and a comparison of these values with those obtained in 1924 and 1925 is given in Table 6. The instrument was rewired, and the fixed vertical, and movable horizontal wire intervals were redetermined in September 1928 after the rains. The new values are given below :-

Wire intervals 1928.		
I	$27 \cdot 7$	
II	$14 \cdot 0\}$	Equatorial
IV	$13 \cdot 6\}$	
V	$27 \cdot 7)$	
A-B	$-997 \cdot 5$	Movable wire
B-C	+ 999.3 \}	Movable wire

Regular latitude observations were commenced in October 1928. A programme composed of all star couples available in the Nautical Almanac, American Ephemeris and Connaissance des Temps was made out for use throughout the 24 hours. The other zenith telescope, which was constructed in 1910 after Col. Cowie's design, will be brought into use in the course of next year.
5. Standards of length. -8 steel tapes for use of the field detachments of No. 17 Party were compared before and after the field season against standard bar I_{s}, and the results supplied to No. 17 Party.

12 pairs of newly graduated staves, received by No. 17 Party from M.I.O., were tested for regularity of graduation errors against standard bar $1 / 1900$. The results are given in two forms in Tables 7 and 8 respectively.

A 50 feet measuring tape, made by the Poldi Steel Works of noncorrosive steel, was received from the M.I.O. during the year for examination and report as to its suitability for survey purposes. This tape was tested against the standard 50 feet plugs laid in the floor of the base-line alley for two periods of a fortnight each. Although necessary facilities are not as yet available to measure the coefficient of expansion of tapes with the requisite degree of accuracy, fairly accordant results were obtained, which show that the tape is made of a material with a coefficient of expansion somewhat less than that of steel. It was used for actual measurement of bases in the compound, and found generally useful for survey work, standing up well to rough handling.
6. Hunter Short Base. - The idea of using a short base for topographical purposes was first put forward by Dr. Hunter in wotes, circulated to the Directors of Survey Circles monder Geodetic Branch letter No. $5151 / 65$ dated 11 th August 1925. The type of short base therein suggested consisted of a single span of the measuring tape pulled tant by means of a simple straining device between posts, the tension of the tape being tested by a spring balance. Further experiments led to the evolution of the Hunter Short Base in its present form. This patteru of short base has been tested on the Frontier and found satisfactory. It should prove useful for general exploratory purposes or for use by Artillery Survey Sections in the field. 'Two such sets have been constructed and supplied to the Royal Artillery Survey Section, Kakīl, a booklet of instructions being compiled by Major C. M. Thompson for issue with the apparatus, (vide also Chap. I § 18). The Hunter Short. Base, as issued, is made up of 4 sections of tape, suspended on "t terminal and 3 intermediate posts. The tapes were standardized in the Observatory Section, and correction tables for the lengths of tape supplied with each set. The tapes hitherto used have been made of steel, which have proved sufficiently accurate for ordinary purposes. Experiments are also being made with invar tapes, which should give still better results for measurements of high precision. The high extra cost of the invar tapes lardly justifies their use for ordinary purposes.
7. Seismograph observations.-The Omori seismograph was in operation throughout the year, except for the period June to Augnst 1928, when it was being removed and reinstalled in the newly built Haig observatory. The instrument has been set up east and west on its new site and not north and south, as it was previously in the Burrard observatory.

An attempt was made to increase the period of about :30 seconds per swing from its normal, but it was not found possible to do so beyond 45 seconds, at which point the smooth working of the needle was
interfered with by the change, the needle being deflected considerably from the line of the minute-marker during the 24 hours. The period is now being reduced until no such interference with the markings on the trace oceurs. One of the two new steel points made by the Mathematical Instrument OHfice to replace the old and worn out one, has been used with the instrument in its new position. Table 9 gives a list of the earthquakes recorded at Dehra Dūn during the year.

The earthquake data for 1927 were sent to Professor H. H. Turner p.r.s., Oxford, early this year.
8. Meteorological observations.-These observations were continued throughout the year. Daily values of the recorded temperatures and pressures were supplied to five different offices, and weekly abstracts to the local press and the Health Officer, Dehra Dūn. Monthly abstracts of rainfall were sent to the Meteorological Office Poona, and those of humidity to the Royal Indian Military College, Dehra Dūn.

In August 1928, the meteorological hut and rain gauge were removed from the old site to a more convenient open space east of the Haig observatory.

Since the end of the year 1911, owing to financial stringency Dehra Dūn ceased to record and report complete meteorological data to the Meteorological Department, and has since only sent in rainfall returns. Owing to the growing importance of the town as a scientific headquarters, and the interest taken in weather conditions by the heads of the several departments located here, the necessity of reporting and publishing full records in the Weather Bulletins bas been keenly felt.

The Meteorological Department has accordingly arranged for an inspertor to make a periodical inspection to test the accuracy of the instruments. As soon as the instruments have been pronounced suitable by the inspector, the daily observations at 8 . a. m. will be resumed.
9. Pendulum observations.-The Officer in charge No. $1+$ Party (Pendulums) is endeavouring to find an explanation of apparent changes in the value of gravity at Dehra Dūn. Continuous pendulum observations have never been talien at Dehra Dūn previously, and in order to obtain data it las been decided to take periodical gravity observations at Dehra Dunn with the old brass pendulums Nos. 137, i38, 139 and 140. This investigation has been taken up by the Observatory Section, and work commenced at the end of August 1928. The value of " g " derived from the first set of ohservations is $979 \cdot 071$, the adoptent value beinir 979-06.3
10. Maintenance and examination of delicate scientific instruments.-17 levels of different types were received from No. 17 Party and were returned duly examined, and repaired before the commencement of the field season 1928-29.

10 theodolites stored in the Publication and Stores godown were cleaned and adjusted.

T'o facilitate the overhauling of clelicate instruments in the Stores Section, Director, Geodetic Branch, has approvel that delicate scientific instruments be separated from the other stores. These are to be in charge
of the Observatory Section, which will be responsible for their maintenance and issue in proper working order.
11. Course of instruction for the Upper and Lower Subordinate Computers of the Computing and Tidal Party.-The U.S.S. and L.S.S. computers of this party, though versed in geodetic computations, were not always able to appreciate the difficulties which the triangulator, traverser or leveller had to encounter in the field, so that it was considered advisable to give these officers a course of practical training in the use of instruments and other field work.

This work was entrusted to Mr. R. B. Mathur, the officer in charge of this section, and a class of about 10 to 12 officers has been attending on Saturdays since April 1928.

Triangulation, traversing and levelling are the subjects, in which instruction has been given up to the present.
12. Miscellaneous experiments.-Use of Vicol prism and yellow screens.-An experiment was made to see whether a Nicol prism fitted to the eye-piece of a theodolite, or a yellow screen fitted to the eye-piece or object end of a telescope, tended to improve the visibility of distant objects in misty or hazy weather. As regards the yellow screen it appears that this screen is more effective when attached to the eye-piece instead of to the object glass. Accordingly it is intended to experiment further with yellow and also green screens of different shades, and test them on theodolites and levels under field couditions.

The use of the Nicol prism seems to afford no particular advantage over the ordinary eye-piece in hazy weather, as though perhaps it improves the visibility in some cases, it also unduly reduces the amount of light, which reaches the eye, and so the total improvement in clearness is inappreciable.

Use of buff-coloured levelling staves.-Experiments were carried out to test whether black and buff divided levelling staves, afford any adrantages over black and white ones, as regards visibility in clear and dull weather. The results show that there is very little to choose betricen them, and if anything, the black and white staves are preferable.
13. Magnetic observations.-The usual programme of magnetic observations was carried out during the year. It consisted of a continuous photographic record of declination, horizontal force and vertical force, daily observation of dip and bi-weekly observations of declination and horizontal force. Five severe magnetic storms were recorded during the year, namely:-on April 14th, July 22nd, August 21 st, October 12th and 22 nd.

Sub-soil water percolated into the undergromed magnetograph room between Angrast ${ }^{2}+t_{\text {th }}$ and September 15 th.

A record of the magnetic chavacter of the days for each quarter of the year was regularly sent to the De Bilt Royal Metcorological Observatory.

Owing to the long interval that has elapsed since the Magnetic Survey of India was completed, and the consequent uncertainty in the secular variations, it is 110 longer possible to supply precise values of magnetic declination for publication on maps. Consequently it has
been decided to supply values for 1 -inch, $\frac{1}{2}$-inch and $\frac{1}{4}$-inch sheets for every fifth year, and to the nearest 10 minutes only. This change was brought into effect from March 1928.

Mean values of the declination and H. F. constants.-Table 10 gives the mean monthly values of the magnetic collimation, the distribution constants $P_{1 \cdot 2}$ and $P_{2 n}$, the accepted value of $\log \left(1+\frac{P}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1}$ and the values of " m " (computed with the new value of the moment of inertia of Magnet No. 17, determined in December 1927).

Mean base-line values.-Table 11 gives the mean monthly observed values of the declination and horizontal force base-lines.

Mean scale values and temperature range.-The mean scale values for 1927 for an ordinate of $1 / 25$ inch were :-

Horizontal force	$1 \cdot 31$ gammas Vertical $"$ Declination
	$1 \cdot 66$ to $9 \cdot 69$ gammas
	$1 \cdot 03$ minutes.

The mean temperature of the year was $26^{\circ} \cdot 6 \mathrm{C}$. with maximum and minimum monthly values of $27^{\circ} \cdot 2 \mathrm{C}$. and $25^{\circ} \cdot 9 \mathrm{C}$, the temperature of reduction being $27^{\circ} \cdot 0 \mathrm{C}$.

Mean monthly values and annual changes.-Table 12 shows the mean values of the magnetic elements for 1926 and 1927, and the annual changes for the period.

Classification of the magnetic character of days and the mean monthly values of elements with their mean hourly deviations.--'Tables 13 to 17 show the classification of the daily trace and the dates of magnetic disturbances, the mean monthly values of the magnetic elements from 5 selected quiet days in each month and the hourly deviation from the mean.

TABLE 1.-Temperature and pressure of Riefler clock No. 450 and its rate, by tramsit instruments, 1927-28.

[ABLE 1.-Temperature and pressure of Riefter clock No. 450 and its rate, by transit instruments, 1927-28-(contd.).

TABLE 1.—Temperalure and pressure of Riefler clock No. 450 and its rate, by transit instruments, 1927-28-(concld.).

Date	Cell tempera-	Clock			Remar'ss
		Rate* durius preceding period per duy	Pressure	Temperiture	
1928	F	\checkmark	D m	C	
Aug. 5	83.1	- 0.07	581	$28 \cdot 3$	
10	83.4	- 0.08	582	$28 \cdot 4$	
15	83.8	- 0.12	584	$28 \cdot 6$	
18	83.9	$-0 \cdot 10$	584	$28 \cdot 7$	
3	83.5	- $0 \cdot 11$	555	$28 \cdot 5$	
25	8.7 7	-0.17	585	$28 \cdot 2$	
$\because 8$	83.2	-0.03	584	27.8	
Sept $\quad 2$	81.9	- 0.06	984	$27 \cdot 6$	
10	82-3	-0.13	544	$27 \cdot 9$	
14	$83 \cdot 1$	-0.12	585	28.4	
20	$83 \cdot 6$	-0.15	596	23.6	
25	$83 \cdot 7$	- 0.16	586	28.5	
O.t. 1	82.0	-0.17	586	$28 \cdot 0$	

TABLE 2.—Error of Riefler clock No. 450, at 20 hours, Indian
Standard Time, by transit instruments, 1927-28.

Date	Sonth 'Transit	North Transit	Date	Sonth Transit	North 'l'ransit
1927	$m s$	$m 8$	1928	m s	m s
Oct. 11	-0 34.98	\ldots	April 10	-0 40.86	-0 40.84
14	34.67	...		\cdots	$40 \cdot 66$
18	34.27	...	23	...	$40 \cdot 69$
21	83.89	-0 33.64	30	...	$4.1 \cdot 14$
27	$33 \cdot 17$	32.85	Muy 4	...	$41 \cdot 44$
Nov. 1	32-67		9	...	42.01
6	32.05		14	...	$42 \cdot 68$
10	31.64	31.50	19	...	$43 \cdot 29$
16	31.02	31.03	23	...	44.05
20	$30 \cdot 51$	\cdots	28	\ldots	45.28
26	$29 \cdot 64$	29.53	June 2	...	46.91
Dec. 1	$29 \cdot 04$		9	...	49.58
5	$28 \cdot 69$...	15	...	$52 \cdot 36$
11	$28 \cdot 07$...	21	...	$54 \cdot 92$
16	27-39	...	27	...	$54 \cdot 15$
22	$26 \cdot 74$...	July 3	...	$54 \cdot 32$
$\because 6$	$27 \cdot 09$..	-6	...	$54 \cdot 45$
:30	$30 \cdot 38$...	11	...	54.54
1928					
Tan. 8	$81 \cdot 69$...	17	\ldots	54.90
11	31.64	\cdots	20	\ldots	55.01
16	$31 \cdot 67$.	27	\ldots	$55 \cdot 45$
21	31 Af	.	Aug. 5	\cdots	$56 \cdot 05$
- 28	$32 \cdot 22$...		56.47	...
F*rl). 4	33 ¢2	...	10	57.09	\cdots
15	$34 \cdot 90$	\ldots	18	57-39	...
26	$37 \cdot 80$	\ldots	22	$57 \cdot 82$..
Mnr. 2	38.78		25	$58 \cdot 34$..
4	$40 \cdot 73$..	28	58.43	\ldots
12	$41 \cdot 91$		Sept, 2	$58 \cdot 75$...
16	$42 \cdot 15$.	10	$59 \cdot 83$...
19	$41 \cdot 82$		14	- $1 \quad 00.28$...
2 i	$41 \cdot 31$	$41 \cdot 34$	20	$01 \cdot 16$	\ldots
31	...	$40 \cdot 91$	25	01.96	...
April 4	$40 \cdot 90$	40•78	Oct. 1	$02 \cdot 97$..

TA BLE 3．－Longitude of Dehra Dün in time，from the first wireless signal of Bordeaux at $8^{h} 01^{m}$ G．M．T．

Date Green－ wilb	$\underset{\text { Transit }}{\text { By }}$	$\begin{gathered} \mathrm{By} \\ \text { Astrolabe } \end{gathered}$	Observed value minus Accepted valne＊		Date Green－ wich	$\begin{gathered} \text { By } \\ \text { Transit } \end{gathered}$	$\underset{\text { Astrolabe }}{\text { By }}$	Observed value minvs Accepted value＊	
			准䔍					品菏	
1926	$h \mathrm{~m}$ s	$\boldsymbol{h} \quad \mathrm{m}$ s	s	s	19：7	$h \quad m \quad s$	$\boldsymbol{h} \mathrm{m}$ s	s	s
Der． 1	5 1211 87		＋0．08		Mar． 11	51211.74	51211.81	－0．05	＋0．02
	11.85	51211．69	＋0．06	$-10 \cdot 10$	15	11．78	$12 \cdot 00$	－0．01	$+0 \cdot 21$
7	1188	11.63	＋003	$-0 \cdot 16$	19	11.77	11.97	－0．02	＋0．18
10	11.84	11.90	$+0.05$	＋0．11	26	$11 \cdot 88$		$+0.09$	
15	$11 \cdot 82$	11.8 i	＋0．03	$+0.06$	31	11．93	12.06	＋0．14	$+0.27$
18	11－84	11．77	$+0.05$	$-0.0 \div$	A pr． 5	$11 \cdot 83$	11.87	＋0．04	＋0．08
22	11.70	11.81	－0．09	$+0.02$	11	11．79	11.85	$0 \cdot 00$	$+0.06$
25	11－86	11.86	$+0.07$	$+0.07$	18	11.78		-0.01	
29	11.86	11.89	＋0．0i	$+0 \cdot 10$	22	11－82	11.86	$+0.03$	$+0.07$
1927 Jan．	11.61	11.72	－0．18	－0．07	29	11．84		＋	＋0．20
	11.88	11.88	＋0．09	$+0.09$	May 10	11.99	11.96	＋0．20	$+0 \cdot 07$
8	$11 \cdot 85$	11.73	$+0.06$	－0．06	$\underline{2 f}$	$11 \cdot 81$	11.98	＋0．02	$+0.18$
12	11.77	11．74	－0．02	－0．05	Oct． 27	$11 \cdot 80$	．．	＋0．10	．．．
15		11.84	…	＋0．00	Nov． 1	11.80	．．．	$+0 \cdot 10$	．．．
18	11．87	$11 \cdot 90$	＋0．08	＋0．2 11	6	$11 \cdot 87$	．．．	＋0．08	．．．
21	11.96	11.91	＋0．17	$+0 \cdot 12$	10	$11 \cdot 85$	．．．	$+0.06$	
$\because 6$	11.82	$11 \cdot 91$	$+0.03$	$+0 \cdot 12$	16	$11 \cdot 93$	．．．	＋0．14	\ldots
Febs． 3	11.88	．．．	＋0．04	．．．	20	11．59	．．	－0．20	．．．
－	$11 \cdot 84$	11.82	$+0.07$	＋0．03	26	11.89	．．．	＋0．10	
11	11.86	$11 \cdot 8.4$	＋0．07	＋ $0 \cdot 105$	Dec． 1	$11 \cdot 81$		＋0．02	\ldots
18	11．42	11.86	＋0．0．3	＋0．0i	5	11.93	．．．	＋0 14	．．．
24	11．85：	－	$+0.06$	．．．	11	11．92		＋0．13	\ldots
28	$11 \cdot 85$		＋ 0.06	\ldots	16	$11 \cdot 85$	．．．	$+0.06$	．．．
Mar． 4	$11 \cdot 72$	．．．	$-0 \cdot 07$	．	22	$11 \cdot 82$	．．．	＋0．03	．．．

＊Acrepted ralue derived from the Interantional Longitnde Project is $5^{\mathrm{h}} 12^{\mathrm{m}} 11^{4}$ •ig．

TABLE 4.-Longitude of Dehra $D_{u} n$ and its variation from accepted value, as determined from reception of wireless time signals from Bordeaux and Rugby.

Greonwich Date	Bordeaux		Ragby	
	Longitude in time	Observed value minus Accepted value *	Longitude in time	Observed value minus Accepted value *
1928	$h \mathrm{~m}$	s	$n \mathrm{~m}$	s
Jan. 8	$5 \quad 12 \quad 11 \cdot 64$	- 0.15	万 $12 \quad 11 \cdot 76$	- 0.03
11	11.82	+ 0.03	11.80	+ 0.01
16	11.86	+ 0.07	11.87	+ 0.08
21	11.68	-0.11	11.70	- 0.09
28	11.73	- 0.06	11.75	- 0.04
Feb. 8	i1. 84	+ 0.05	11.87	+ 0.08
15	11.63	- 0.16	11.62	- 0.17
26	1176	-0.03	11.78	-0.01
Mar. 2	11.82	+0.03	11.82	+ 0.03
8	11.80	+ 0.01	11.76	- 0.03
12	1175	- 0.04	$11 \cdot 69$	- 0.10
16	11.77	- 0.02	11.65	- 0.14
19	11.78	- 0.01	11.74	- 0.05
$2{ }^{\text {i }}$	11.80	+ $0 \cdot 01$	$11 \cdot 77$	- 0.02
$\Lambda_{\text {pril }} 4$	11.88	+ 0.09	11.81	+ 0.02
10	11.80	+ 0.01	11.75	- 0.04
18	11.76	- $0 \cdot 03$	11.82	$+0.03$
23	11.73	- 0.06	11.69	- 0.10
30	11.89	+ 0.10	11.88	+ 0.09
May 4	11.95	+ 0.16	11.77	- 0.02
9	11.84	+ 0.05	11.76	- 0.03
14	11.90	$+0.11$	$11 \cdot 82$	+ 0.03
19	11.80	$+0.01$	$11 \cdot 73$	- 0.06
23	11.60	$+0.11$	11.75	- 0.04
Tune 15	11.73	- 0.06		
21	11.68	- 0.11	11.71	- $\dddot{0} \cdot 08$
27	11.78	- 0.01	11.72	- 0.07
Tuly 3	11.88	+ 0.09	11.71	- 0.08
6	11.95	+ 0.16	11.93	$+0.14$
11	11.86	+ 0.07	11.83	+ 0.04
17	11.90	+ 0.11	$11 \cdot 94$	+ 0.15
20	$11 \cdot 87$	+ 0.08	11.87	+ 0.08
27	11.85	$+0.06$	11.83	+ 0.01
Aug. 5	11.88	+ 0.09	11.88	+ 0.09
10	11.86	$+0.07$	$11 \cdot 86$	+ 0.07
15	11.89	+ 0.10	11.86	+ 0.07
18	11.80	$+0.01$	11.61	- 0.18
22			11.75	- 0.04.
25	11.88	+ 0.09	11.90	+ 0.11
28			11.82	+ 0.03
Srpt. 2		...	11.88	+ 0.09
10	11.80	+ 0.011	11.87	+ 0.08
14	11.83	$+0.01$	11.80	+ 0.01
20	11.78	- 0.01	11.85	+ 0.06
25	11.75	- 0.04	$11 \cdot 73$	-0.06

[^1]TABLE 5.-Longitude of Dehra Dïn. Mouthly means. Time by Iransit.

Month		Longitude	Month		Longitude
		$\boldsymbol{h} \boldsymbol{m}$ s			$\bar{h} \mathrm{~m} \quad \mathrm{~s}$
December 1926 ...	9	51211.83	Janarary 1928 ...	5	$\begin{array}{llll}5 & 12 & 11.77\end{array}$
January 1927 ...	7	11.82	Febrnaly ...	3	11.75
Febraary ...	6	11.85	March ...	6	11.76
March	6	11.80	April ...	5	11.80
April $\quad .$.	5	11.81	May ...	5	11.83
May ...	2	11.90	June ..	3	11.73
October		11.89	July ...	6	11.87
November ...	6	11.84	Angust $\quad .$.	7	11.84
December ...	5	11.87	September ...	5	11.81

TABLE 6.-Values of 1 division of levels attached to Zenith Telescope No. 1.

TABLE 7.-Graduation error of new Levelling Staves (Actual length—Reputed length).

Reputed Length	$\begin{gathered} \text { Staft } \\ \text { No. } 018 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. } 018 \mathrm{~B} \end{gathered}$	Staff No. 017A	$\begin{gathered} \text { St:iff } \\ \text { No. } 01713 \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. } 0.016 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. } 016 \mathrm{~B} \end{gathered}$
feet						
1	+.0001	-. 0003	+ . 0004	- .0001	+.0005	- .0001
2	+ $\cdot 0007$	-. 0001	+.0005	+.0003	+ $\cdot 0009$	+.0008
3	+.0001	-.0002	+ .0005	- 0001	+ $\cdot 0007$	+ .0004
4	+ 0004,	+.0002	+ 0005	$+\cdot 0001$	+ 00012	+.0008
5	+.0005	+.0003	+. 0008	-. 0001	+.0010	+.0008
6	+.0006	+ .0008	$+.0007$	- .0002	+.0011	+.0007
7	+ . 0007	+. 0005	+ .0007	-. 0002	+ $\cdot 0009$	+ $\cdot 0008$
8	+.0006	+ .0010	+ 0010	+.0001	+ 00013	+.0010
9	+.0008	+.0006	+ . 0008	-. 0002	+ 00013	+.0011
10	+ $\cdot 0010$	+.0006	+.0009	$+\cdot 0001$	+ $\cdot 0015$	+.0014
Reputed Leagth	$\begin{gathered} \text { Staff } \\ \text { No. } 015 \mathrm{~A} \end{gathered}$	staff $\text { No. } 01513$	$\begin{gathered} \text { Staff } \\ \text { No. } 07 \mathrm{~A} \end{gathered}$	Staff No 07 B	$\begin{gathered} \text { Statf } \\ \text { No.06A } \end{gathered}$	Staff No. 06 B
fcet	feet	feet	feet	feel	feet	feet
1	- 0003	+ 0003	+ 0003	- .0001	+ .0003	- . 0004
2	+ .0004	+ $\cdot 0004$	+ $\cdot 0005$	+ $\cdot 0002$	+ $\cdot 0007$	+.0001
3	+ .0001	$+.0001$	+ $\cdot 0001$	- 0000	+ .0003	- .0003
4	$+\cdot 0001$	+ $\cdot 0006$	+.0002	+ . 0002	+ . 00006	+ .0001
5	+.0002	+ 0004	+ . 0005	+.0004	- 00009	+ 00002
1%	+ . 0002	+ .0007	. .0001	+.0005	+ 0005	+ 0003
7	$+\cdot 0004$	+ $\cdot 0005$	$+\cdot 0007$	- 0001	+.0004	+ . 0004
8	+ $\cdot 0003$	$+.0007$	-0000	+. 0005	+.0008	+ $\cdot 0003$
0	-0000	+ 00006	-. 0005	- 0004	+ .0006	+ $\cdot 0005$
10	+ . 0003	+ $\cdot 0007$	+ $\cdot 0005$	+ 0005	+.0006	+ 0006

TABLE 8-Graduation error of new Levelling Staves
Actual length $-($ Reputed length $) \times \frac{\text { Actual total length }}{10 \text { feet }}$.

Reputed Length	$\begin{gathered} \text { Staff } \\ \text { No. } 018 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Staft } \\ \text { No.018B } \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. } 017 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No.017B } \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. } 016 \mathrm{~A} \end{gathered}$	Staff No. 016B
feet.	feet	feet	feet	feet	feet	feet
1	-0000	-. 0004	+.0003	- . 0001	+ 00003	- . 0003
2	+.0005	-.0003	$+.0004$	+.0003	+ .0006	+.0006
3	- .0002	- 0004	+.0002	-. 0002	+ 00002	-0000
4	- 0000	- . 0001	+.0002	+. 0001	+.0006	+. 0003
5	-0000	. 0000	+ 00004	- . 0002	+.0002	+.0001
6	-0000	+.0005	+ $\cdot 0001$	- 0002	$+.0002$	-. 0001
7	- $\cdot 0001$. 0000	$+.0001$	-. 0002	-. 0002	-. 0001
8	. 0002	+.0005	+.0003	. 0000	$+.0001$	-. 0001
9	-.0001	. 0000	+.0001	-. 0003	-.0001	-.0001
10	$\cdot 0000$	- 0000	. 0000	-.0000	- 0000	. 0000
Reputed I.ength	Staff No. 010̈a	Staff No. 015B	$\begin{gathered} \text { Staff } \\ \text { No. } 07 \mathrm{~A} \end{gathered}$	Staft No. 07B	$\begin{gathered} \text { Staff } \\ \text { No. } 06 \mathrm{~A} \end{gathered}$	$\begin{gathered} \text { Staff } \\ \text { No. 06B } \end{gathered}$
feet	feed	feet	feet	feet	feet	feet
1	- .0004	+.0002	+.0004	. 0000	+ . 0002	- . 0005
2	$+.0004$	+.0002	+.0005	+.0003	+.0006	. 0000
3	-0000	-. 0001	+.0002	+.0001	+.0001	-.0005
\pm	- 0000	$+.0003$	+ .0004	-. 0004	+. 0003	-. 0001
5	+.0001	. 1000	+ . 0007	+.0007	$+.0006$	-. 00001
6	-00010	+.0002	+ .0004	+. 0008	+.0001	. 0000
7	+.0003	. 0000	- 0000	+ .0004	- . 0001	. 0000
8	+.0001	$+.0001$	$+.0004$	+.0009	+.0003	-. 00001
9	-. 0003	-. 0001	- .0001	+.0001	. 0000	-. 0001
10	. 0100	. 0000	. 0000	. 0000	. 0000	-0000

TABLE 9.-Earthquakes recorded at Dehra Dūn during 1927-28.

0	Date	T'lime of beginning. Indian Standard Time		Duration	Distance of epicentre		Intensity	Remarks
		Debra Dūn	Simla*		Dehra Dūn	Simla*		
	1927	$h \quad m$	$h \quad m$	m	miles	miles		
1	Oct. 8	1606	1606	5	850	200	slight	
2	, 24	$21 \quad 53$	$21 \quad 42$...	6,000	6,000	$\begin{aligned} & \text { consider- } \\ & \text { abie } \end{aligned}$	
3	,, 26	$15 \quad 12$	$15 \quad 10$	2	slight	
4	Nov. 1	504	\cdots	8	400	...	slight	
5	" 8	851		41	1,500	...	slight	
6	, 14	$5 \quad 51$	$5 \quad 51$	47	3,500	3,200	slight	
7	, 14	$10 \quad 46$	$10 \quad 37$	30	1,600	2,200	slight	
8	", 17	248	$2 \quad 49$	30	2,600	3,300	slight	
9	Dec. 29	$0 \quad 02$	001	58	3,000	4,400	moderate	
	1928							
0	Jan. 7	111	110	60	3,400	3,700	moderate	
1	Feb. 3	1931	1933	20	2,500	5,000	slight	
2	" 7	$5 \quad 37$	$5 \quad 39$	60	2,500	2,500	considerable	
3	1, 22	139	...	36	4,300	...	slight	
4	, 26	$7 \quad 24$...	34	3,300		slight	
			Bombay ${ }^{*}$			Bombay ${ }^{*}$		
5	Mar. 8	4.20	$4 \quad 20$	22	1,700	2,300	slight	
	$\cdots 8$	$23 \quad 53$...	8	800	...	slight	
6	1, 9	$23 \quad 44$	2341	120	2,300	1,900	great	Seistān 1000
f	, 16	$10 \quad 46$	$10 \quad 45$	120	5,800	5,900	moderate	miles
8	,, 22	$10 \quad 58$	$10 \quad 07$	15	2,300	8,700	slight	(Bombay suly
								sevore. It is doubtful if these are the same shock)
9	,, 29	$10 \quad 46$	$10 \quad 46$	30	2,600	3,700	slight	North Italy.
0	May 27	$15 \quad 33$	1531	88	4,000	4,300	moderate	Jugo slavia
1	,, 28	$21 \quad 34$	2116	12	400	3,300	slight	
2	June 1	$5 \quad 16$	$5 \quad 04$	60	3,000	3,300	slight	
3	,, 1	1901	1853	55	3,300	4,300	slight	
4	", 3	$14 \quad 15$	$14 \quad 10$	60	2,300	3,700	slight	
5	., 21	$2 \because 10$	2211	171	6,000	5,800	moderate	
7	, 30	435	436	120	4,700	5,200	slight	
7	July 19	055	055	133	5,700	5,900	moderate	
3	Aug. 5	$0 \quad 21$	016	120	2,300	8,700	moderate	Dutch Indies
5	, 10	2106	2108	28	550	1,200	slight	
J	, 12	$13 \quad 56$	$\begin{array}{ll}13 & 48\end{array}$	26	...	3,700	slight	
1	,. 22	$0 \quad 39$	$0 \quad 37$	18	750	1,500	slight	
2	י, 23	$9 \quad 29$	$9 \quad 29$	19	350	1,700	slight	
3	Sep. 1	$11 \quad 39$	1142	84	300	$\stackrel{9}{190}$	considerable	
	, 18	$23 \quad 26$		31	3,600		slight	
5	, 19	129	$1^{\prime \prime} 27$	60	9	1,500	slight	

* From Daily Weather Report.

TABLE 10.—Mean values of the constants of Magnet No. 17 at Dehra Dīn in 1927.

Montlis		Declination constants--Mean magnetic collimation	H. F. Constants				
			Distribution factors			Mean values of m	
			$\mathrm{P}_{1.2}$	$\mathrm{P}_{2 \cdot 3}$	$\left\|\begin{array}{c} \text { Accepted value of } \\ \log \left(1+\frac{P}{r^{2}}+\frac{Q}{r^{4}}\right)^{-1} \end{array}\right\|$	Monthly means	$\underset{\mathrm{m}}{\text { Accepter }}$
		, "	cm^{2}	cm^{2}		C.G.S.	C.gis.
Jannary	\ldots	-6 27	$5 \cdot 80$	$6 \cdot 93$		$806 \cdot 32$	
February	\ldots	- 626	$5 \cdot 79$	6.93		. 40	
March	...	- 624	$5 \cdot 72$	$6 \cdot 74$	菏	-32	吕
April	\ldots	- 621	$5 \cdot 71$	6.89	$\xrightarrow{\circ}$	- 30	-
Miy	\cdots	- 624	5.83	$7 \cdot 09$	O	.24 .20	$\stackrel{\square}{6}$
June	...	- 625	5.85	$7 \cdot 01$	-	$\cdot 20$	+
Jaly	\ldots	- 622	5-90	$7 \cdot 12$	10	$\cdot 18$	$\stackrel{\infty}{\square}$
Augast	\ldots	-626	$5 \cdot 86$	$6 \cdot 96$	$\stackrel{\circ}{\circ}$	$\begin{array}{r}\cdot 17 \\ \hline 12\end{array}$	$\dot{8}$
September	\cdots	- 629	$5 \cdot 82$	$7 \cdot 14$	$\underset{\sim}{\circ}$	22	∞
October	\cdots	- 624	5•92	$6 \cdot 94$		-33	
November	...	- G 16	$5 \cdot 95$	$7 \cdot 04$		- 30	
December	...	-620	$5 \cdot 89$	$7 \cdot 09$		- 42	

TABLE 1l.-Base-line values of Magnetoyraphs at Dehra Dün in 1927.

Mouths	Declination	Horizontal force
	Mean value of base-line	$\begin{gathered} \text { Mean value } \\ \text { of } \\ \text { base-line } \end{gathered}$
		C.G.S.
Jannary	$0 \quad 46 \cdot 1$	0.32614
February	$0 \quad 46 \cdot 2$	-32618
March	() 46.1	-32614
April	$0 \quad 46.0$. 32620
May	$0 \quad 46.2$	-32621
June	$0 \quad 46.2$	- 32627
Juls	$0 \quad 46 \cdot 2$. 32630
Augnst	$0 \quad 46 \cdot 1$	- 32627
September	$0 \quad 46.4$	- 32625
October	$\left\{\begin{array}{cc}0 & 46 \cdot 5^{*} \\ 0 & 35 \cdot 3\end{array}\right\}$	- 32621
Novemher	$\left\lvert\, \begin{array}{ll}0 & 35 \cdot 2\end{array}\right.$	-32617
December	$0 \quad 35 \cdot 2$	-32614

* Up to 10^{h} on 18 t lı Oct.
\dagger From 11^{h} on

TABLE 12.-Mouthly mean values of the Magnetic elements and annual chanyes at Dehra Dün in 1926-27.

Dutes	Samam	Forman	Marels	${ }_{4}(1 \times \mathrm{r} i$	May	June	July	turus	Saptumber	Octulter	Nuvember	December
1			9	(c)	s	$\stackrel{8}{8}$	$\stackrel{s}{s}$	(0)	M S	$\stackrel{\text { c }}{ }$	(${ }_{\text {c }}$	s
3	(1)	(6)	¢	$\stackrel{\square}{8}$	s	$\stackrel{\text { s }}{ }$	¢	\bigcirc	(心)	s	0	s
\pm	s	¢	(c)	s		(c)	(c)	-	y	(\%)	c	(C)
			-	c	\%	s	s	c	II	s	c	s
:	$\stackrel{3}{4}$	(C)	¿	${ }_{\text {c }}$	(i)	c	$\stackrel{3}{ }$	c	M	M	(c)	s
9	$\stackrel{\square}{8}$	c	(i)	s	\cdots	(C)	$\stackrel{\mathrm{C}}{ }$	c	s	$\stackrel{8}{8}$	s	S
10	$\stackrel{(C)}{\text { (}}$	$\stackrel{\mathrm{M}}{\mathbf{M}}$	M	$\stackrel{\mathrm{M}}{\mathrm{s}}$	(c)	¢	(C)	$\stackrel{8}{6}$	M	${ }_{4}$	s	s
10	C	M c	M	\cdots	(c)	s	c	c	${ }^{\text {G }}$	s	c	(c)
11 10	s	s	s	s	(c)	s	c	c	c	vG	c	(C)
13	c	${ }_{\text {M }}$	s	$\stackrel{\text { c }}{\text { V }}$	C	$\stackrel{\mathrm{C}}{\text { (c) }}$	$\stackrel{\mathrm{c}}{\mathrm{C}}$	${ }_{(0}^{C}$	$\stackrel{8}{8}$	$\stackrel{\text { c }}{\text { c }}$	(C)	$\stackrel{\text { c }}{ }$
15	s	c	s	s	m	S	(c)	S	s	(c)	c	s
16	(C)	s	${ }^{\text {a }}$	(C)	s	s	(c)	s	(c)	(C)	c	S
17	-	s	M	C	S	S	s	${ }_{\text {c }}$	c	(c)	S	${ }_{\text {M }}$
18 19	Ci	s	s	(c)	S	c	$\stackrel{3}{8}$	((c)	c	S	S
20	s	c	s	(C)	м	(C)	c	G	s	c	S	c
21	(C)	(C)	(C)	c	s	c	$\stackrel{\mathrm{c}}{\mathrm{c}}$	VG_{6}	(8)	$\stackrel{1}{6}$	c	(C)
$\stackrel{22}{31}$	(C)	(C)	$\left({ }_{\text {c }}^{\text {c }}\right.$	(C)	$\stackrel{\text { c }}{\text { S }}$	$\stackrel{\text { s }}{\text { s }}$	$\stackrel{\mathrm{Sg}}{\mathrm{S}}$	$\stackrel{\text { c }}{\text { c }}$	$\left({ }_{\text {(c) }}^{\text {c }}\right.$	VG	(C)	C
- 2	9	cis	(C)	M	${ }_{\text {c }}$	c	s	(C)	c	s	c	c
25	м	\cdots	c	s	(C)	s	c	(C)	s	s	S	s
26	s	m	M	c	s	M	c	\%	s	s	(C)	s
27 28 28	${ }_{\text {c }}$	${ }_{\text {c }}^{\text {C }}$	$\stackrel{(}{9}$	${ }_{\text {c }}^{\text {C }}$	${ }_{\text {M }}$	M	${ }_{\text {c }}^{\text {S }}$	${ }_{\mathrm{c}}^{\mathrm{c}}$	${ }_{\text {c }}$	(C)	S	$\stackrel{\text { c }}{ }$
${ }^{29}$	s	...	$\stackrel{5}{8}$	c	S	(C)	c	M	s	c	s	M
30 31	¢	-	s	s	${ }_{\text {c }}^{\text {c }}$	s	$\left({ }_{C}^{\text {(})}\right.$		s	S	s	(C)
		-										
	${ }_{14}^{13}$			110			10		11	11	${ }_{13}^{16}$	18
м ...	$\stackrel{2}{2}$	5	$\stackrel{5}{8}$	4	${ }_{6}^{6}$	2	\ldots	${ }_{1}^{2}$	${ }_{1}$	2	1	$\stackrel{3}{1}$
	1			1		\ldots	1	1		2
Trace lost												

Chap. II.]
OBSERVATORIES
TABLE 14.- Declination at Dehra $D_{\bar{u} n ~ i n ~}^{\text {in }} 1997$, (determined from 5 selected quiet days in each month).

	云		\bigcirc	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \\ & + \\ & + \end{aligned}$	$\stackrel{+}{+}$	
	$\stackrel{\beta}{\circ}$	$\begin{array}{llll} \vec{i} & \dot{0} & 0 & \dot{0} \\ + & i & 1 & 1 \end{array}$	$\begin{aligned} & \dot{0} \\ & i \end{aligned}$	$0 \dot{0} 0 \dot{0} \dot{0} 0$	0	
	N	$\overrightarrow{\dot{0}} \overrightarrow{\dot{0}} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$	$\begin{aligned} & \text { N} \\ & \dot{0} \\ & \mathbf{i} \end{aligned}$	$\overrightarrow{\dot{0}} \vec{i} \overrightarrow{0} \dot{\dot{0}} 0 \vec{i}$	7	
	ה	$\begin{array}{ccccc} \overrightarrow{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} \\ 1 & \dot{0} \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & \text { è } \\ & \dot{i} \end{aligned}$	$\begin{array}{llllll} \underset{0}{0} & 0 & \dot{0} & \dot{0} & \dot{0} & \dot{0} \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{1}{0}$	
	¢	$\begin{array}{llllll} \overrightarrow{0} & 0 & 0 & N & 0 \\ 1 & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} \end{array}$	$\begin{aligned} & \ddot{0} \\ & \dot{0} \end{aligned}$	$\begin{array}{llllll} \overrightarrow{0} & 0 & 9 & \grave{1} & \overrightarrow{0} \\ \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} \end{array}$	$\stackrel{\square}{0}$	
	$\stackrel{0}{2}$	$\begin{array}{llllll} \overrightarrow{0} & \stackrel{0}{0} & 0 & \overrightarrow{0} \\ 1 & \dot{0} & \dot{0} & \dot{0} & \dot{0} & \dot{0} \end{array}$	$\stackrel{9}{i}$	$\begin{array}{llllll} \mathbf{0} & \overrightarrow{0} & \overrightarrow{0} & \overrightarrow{0} \\ 1 & \dot{0} & \dot{0} & + \\ 0 \end{array}$	\vec{i}	
	$\underline{\infty}$	$\begin{array}{llllll} 101 & 0 & 0 \\ \dot{0} & 0 & 0 & \dot{0} & \dot{0} \\ i & i & i & i & i \end{array}$	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$	$\begin{array}{llll} \dot{0} 0 & \dot{0} \dot{0} \dot{0} \\ + & + \\ + & + \end{array}$	+ + +	
	-	$\begin{array}{llll} \overrightarrow{0} \dot{1} \\ \dot{0} & \ddot{0} & \dot{0} \\ +1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & 1 \end{aligned}$	$\begin{array}{llllll} \dot{9} & 0 & \infty & \overrightarrow{0} \\ \dot{0} \dot{0} & \dot{0} & \dot{0} & \stackrel{0}{+} \\ 1 & 1 & 1 & 0 \end{array}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ 1 \\ 1}}$	
	$\stackrel{\square}{0}$	$=\begin{array}{llll} 0 & \dot{0} & 0 & \overrightarrow{0} \\ 0 & \dot{0} & \dot{0} \\ 1 & 1 & \end{array}$	$$		$\stackrel{\square}{\square}$	
	\square	$\begin{array}{ccccc} 0 & 0 & \infty & 0 & 10 \\ \dot{0} & \dot{0} & -1 & \dot{-} & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 1 \\ & i \\ & i \end{aligned}$	$\begin{array}{cccccc} \underset{\sim}{\sim} & \underset{\sim}{c} & \underset{\sim}{\infty} & \dot{\sim} & \dot{\sim} & \dot{1} \\ \dot{1} & 1 & 1 & 1 & 1 & 1 \end{array}$	$\stackrel{\square}{9}$	
	$\stackrel{+}{-}$		$\begin{gathered} \stackrel{\sim}{\rightharpoonup} \\ \stackrel{\rightharpoonup}{1} \end{gathered}$		$\stackrel{\rightharpoonup}{i}$	
	$\stackrel{\sim}{-}$		$\begin{aligned} & \because 0 \\ & ? 4 \end{aligned}$		\bigcirc	
	$\begin{aligned} & \hline 0 \mathrm{O} \\ & \stackrel{\circ}{7} \end{aligned}$	$\begin{array}{cccccc} + & 0 & + \\ 0 & - & \dot{0} & \underset{i}{-} & \underset{0}{-} \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & \stackrel{\circ}{\dot{I}} \\ & \hline \end{aligned}$		0 $\stackrel{1}{1}$ i	
	$\overrightarrow{-}$	$\begin{array}{lll} \infty \\ \dot{0} \dot{0} \dot{0} \\ +1 & \dot{0} & \dot{1} \\ 1 \end{array}$	+ + + +		$\stackrel{\rightharpoonup}{\square}$	
	\bigcirc		$\xrightarrow{-3}$		1 $\stackrel{1}{-1}$	
		$+1++{ }^{+}$	$+$	$\underline{+}+1++$	$+$	
	∞	$\dot{+} \dot{\sin } \dot{\theta}$	-1	$\underset{\sim}{\square} \dot{\sim} \dot{\sim} \dot{\sim} \dot{0} \dot{\infty} \dot{\infty}$	$\stackrel{+}{0}$	
		$+{ }^{+}+{ }^{+}$		$+++++1$	$+$	
	∞	$\dot{0} \dot{0} \dot{-} \dot{\sim} \dot{\sim} \dot{\rightarrow} \dot{0}$	$\xrightarrow{\square}$	$\dot{\rightarrow} \dot{\rightarrow} \dot{\theta} \dot{\sim} \dot{0}$	$\stackrel{\square}{\square}$	
		$\pm+ \pm++$		$+{ }_{-}^{+}+{ }_{-}^{+}$	+	
	-	$\begin{array}{llll} 1 \infty \\ \dot{0} \dot{0} \dot{-}+\dot{0} \\ 1 & + \\ 1 & 1 \end{array}$	$\dot{+}$	$\begin{array}{cccc} 0 \\ \infty & 0 \\ + & \dot{0} & + \\ + & + \\ + & + \end{array}$	$\stackrel{+}{+}$	
		\cdots - +0	$\stackrel{+}{0}$	$\cdots \cdots \cdots$	$\stackrel{+}{+}$	
		$\dot{0} \dot{0} 0 \dot{0} \dot{0}$	i	$\dot{+}+\dot{+}$	$\stackrel{+}{+}$	
			\cdots	$\begin{aligned} & +++ \\ & +\infty \\ & +\infty \\ & +\infty \\ & +\infty \end{aligned}$		
	10	$\ddot{i} 0 \ddot{0} \dot{0} \dot{i} \dot{i}$	0	$\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$	+	
		$1+1$	1	$++++++$	$+$	
	+	0000	$\stackrel{\rightharpoonup}{0}$		$\stackrel{+}{0}$	
		41	1	+ + + + +	$+$	
	0			1010	$\stackrel{+}{\square}$	
		+ +	+		+	
		$\checkmark \rightarrow 0 \rightarrow 1$		\cdots in $0 \cdots$ -	\rightarrow	
	2	$\dot{0}_{1}^{0} 00 \dot{0}+\dot{0}+1$	\bigcirc	$\dot{+} \dot{+} \dot{+} \dot{+} \dot{+}$	$\stackrel{+}{+}$	
		$\because \because 00^{1}$			\square	
		$\underline{0} \dot{0}+\dot{0}+\dot{0}+0$	\bigcirc	$\begin{array}{r} \dot{0} \dot{+}+\dot{+} \dot{+} \dot{+} \dot{0} \\ + \end{array}$	$\underline{+}$	
					0	
	\cdots	$0 \dot{+} \dot{0} \dot{1} 0$	0 + + + +	$\begin{array}{r} \dot{0} \dot{0} \dot{+} \dot{0} 0 \dot{1} \end{array}$	$+$	
			4		1	
					명	

TABLE 15.-Horizontal force ul Dehra $D \bar{n} n$ in 1927 , (determined from 5 selected quiet days in each month).

	를	atanato $+11+1$	$\stackrel{7}{1}$		\cdots
	¢	$\begin{aligned} & x^{2}-1+1 \\ &+1+1 \end{aligned}$	$\stackrel{\rightharpoonup}{1}$	$\begin{array}{llllll}+1 & 0 & 0 & -1 \\ +1 & 1 & 1 & 1 & 1 & 1\end{array}$	*
	ล	$\begin{array}{llllll} \\ r^{N} & + & + & 01 & \infty & 0 \\ + & 1 & 1 & 1 & 0 \end{array}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{array}{cccccc} \hline N & F & 0 & N & 0 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	∞
	N	$0 \begin{array}{cccc} 10 & -1 & 10 & n \\ 1 & 1 & 1 & 1 \end{array}$	1	$\begin{array}{lllll} \infty & + & \infty & -1 & 0 \\ 1 & 1 & 1 & 1 & + \end{array}$	Ψ
	\%	$\begin{array}{cccccc} \hline r^{2} & - & - & 0 & f & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{gathered} \infty \\ 1 \end{gathered}$	$\begin{array}{ccccc}1 & 20 & 0 & \times & \\ 1 & 1 & 1 & 1 & 0 \\ 1\end{array}$	6
	9	$\begin{array}{ccccc} -7 & 0 & - & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{gathered} \hline \mathbf{N} \\ 1 \end{gathered}$	$\begin{array}{cccccc} \infty & \infty & \theta & \infty & - & \rightarrow 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	0
	$\stackrel{\infty}{-}$	$\begin{array}{cccccc} \hline-1 & -1 & -1 & + & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{gathered} 91 \\ 1 \end{gathered}$	$\begin{array}{cccccc} 0 & \infty & \sim & 0 & \infty & \infty \\ 1 & ! & 1 & 1 & 1 & 1 \end{array}$	10
	\bigcirc	$\begin{aligned} & -1 \\ & +1 \\ & +1 \end{aligned}$	$\stackrel{T}{1}$	$\begin{array}{lll} n & 0 \\ 1 & +0 & 0 \end{array}$	$-$
	$\stackrel{\circ}{\circ}$	$\begin{array}{r} +\infty \times+N \\ ++++1+ \end{array}$	\approx	$\begin{aligned} & \cdots \infty \quad \infty \text { N } \\ & ++++++ \end{aligned}$	12 + +
	$\stackrel{\sim}{2}$		F		$\stackrel{9}{+}$
	\pm		$\begin{aligned} & 7 \\ & + \end{aligned}$		$\stackrel{+}{\sim}$
	\pm		$\stackrel{\text { Po }}{+}$		$\stackrel{\infty}{+}$
	$\begin{aligned} & 5 \\ & 0 \\ & 8 \\ & \hline 2 \end{aligned}$		$\begin{aligned} & 0 \\ & + \end{aligned}$		+ +
	\exists	$\rho \stackrel{N+4}{\rightleftarrows}+++$	ד	$\begin{aligned} & \infty=\square \infty \infty \\ & ++++++ \end{aligned}$	∞
	으응	$\begin{aligned} & N+1 N+\infty \\ & 1+1+1 \end{aligned}$	$\underset{1}{-1}$	$\begin{array}{llllll} \hline \infty & \infty & \infty & 0 & -1 & -1 \\ 1 & 1 & + & 1 & 1 & 1 \end{array}$	-
	\bigcirc	$\begin{array}{r} \pi \infty \infty \infty \infty \\ +111+1 \end{array}$	$\begin{aligned} & 81 \\ & 1 \end{aligned}$	$\begin{array}{cccccc} x & 0 & \infty & \rightarrow & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	r
	∞	$\begin{aligned} & \sim \infty \infty+\infty \\ & +1111+1 \end{aligned}$	$\begin{gathered} 71 \\ 1 \end{gathered}$	$\begin{array}{lllll} 0 & \infty & + & 10 & \underset{\sim}{2} \\ 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$
	-	$\begin{array}{lll} -0 & 7 \\ 1 & 1 & 1 \end{array}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{array}{cccccc} \hline \infty & \sim & \rightarrow & \infty & 0 & \text { in } \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	18
	\bullet	$\begin{array}{cccccc} \geqslant & - & 0 & \infty & 0 & 0 \\ + & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & \infty \\ & 1 \end{aligned}$	$\begin{array}{cccccc} \infty & 10 & 01 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	\cdots
	\therefore	$\begin{array}{cccccc} 1 & \infty & \cdots & \cdots & \infty & + \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$		$\begin{array}{cccccc} \hline+ & N & 0 & 07 & 0 & N \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	7
	$+$	$$	${ }^{\circ}$	$\begin{array}{llllll} \hline+ & \sim & + & + & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	\square
	\cdots	$\begin{array}{llllll} \Rightarrow & \approx & 0 & \infty & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{array}{cccccc} -1 & \infty & 10 & 0 & 0 & 10 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	1
	\cdots	$\begin{array}{cccccc} 10 & x & 0 & + & \cdots & \rightarrow \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	0	$\begin{array}{cccccc} 10 & \infty & 0 & 7 & \infty & - \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	-
	\cdots	$\begin{array}{cccccc} \hline+ & 0 & 0 & 8 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	$+$	$\begin{array}{llllll} & \sim & 0 & \infty & \infty & \sim \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	\bigcirc
	\equiv	$\begin{array}{cccccc} + & \infty & 0 & \infty & \infty & = \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	0	$\begin{array}{ccccc} 10 & \infty & \cdots & - & n \\ 10 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	ω
$\begin{gathered} \text { sпвәтा } \\ \Sigma_{1 प 1 \pi 0} \end{gathered}$			$\frac{4}{8}$		$\stackrel{N}{\kappa}$
$\begin{aligned} & \text { 咅 } \\ & \text { 苞 } \end{aligned}$					

Note - The mean horizontal force for any hon may be obtained by applying the hoarly deviation for that hour with the sign given, to the mean hoarly
value for the month.

$\gamma=0.00001$ C.G.S.

Chap. II.] OBSERVATORIES
TABLE 16.-Vertical force at Dehra Dūn in 1927, (determined from 5 selected quiet days in each month).

* Derived from the actual difference between the value for ony hoar and the general mean fur all bours for the six months.
value for the month.
. Figures in thick type indicate the maximum and minimam values of the hourly deviation.

[^2]
Chapter III

TIDES

by Major C. M. Thompson, i.a.

1. Tidal observatories.-During the year under report, registration by automatic tide-ganges was continued at the following sta-tions:-Aden, Karächi, Bombay (Apollo Bandar), Madras, Kidderpore, Rangoon, Bassein, Pilakat or Deserters' Creek and Basrah. These operations were carried out under the supervision of this department, the immediate control of each observatory being entrusted to the local officers of the port concerned. In addition, the actual times and heights of highand low-waters were observed on tide-poles (during daylight only) under the supervision of the local officials at Bhävnagar, Chittagong and Akyab. The results of these actual observations were compared against the predicted values, with a view to testing whether the predictions based on tidal observations taken many years ago, still maintained a sufficient degree of accuracy.

Table l gives a complete list of stations where tidal registrations have been carried out since the commencement of tidal operations in India in 1874 . The stations at which automatic tide-gauges are still working are shown in italics. Minor stations were closed after a few years, when sufficient data were available from the tidal registrations.

> TABLE 1.-List of tidal stations.

	Station						Remarks
1	Suc\%	...	nuto-	1897	1903	7	
2	Preim		matic	1898	1902	5	
3	Aden	...	"	1879	$\begin{gathered} \text { still } \\ \text { working } \end{gathered}$	49	
4	Mackal	\ldots		1893	$1498{ }^{\circ}$	6	
5	Bushire	\ldots	""	1892	1901	${ }^{8}$	
6	Karächi			$\left\{\begin{array}{l}1868 \\ 1881\end{array}\right.$	$\begin{aligned} & 1840 \\ & \text { still } \end{aligned}$	$\left.{ }^{* 13} 47\right\} 60$	*Small tide. gauge working
			"	(1881	$\begin{aligned} & \text { still } \\ & \text { working } \end{aligned}$		gauge working

(Continued)

TABLE 1.-List of tidal stations-(contd).

$\begin{aligned} & \dot{4} \\ & \dot{4} \\ & \dot{W} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	Station					Remarks
7	Hanstal ...	"	1874	1875	${ }^{1}$	Tide-tables
8	Navinar $\quad .$.	"	1874	1875	$1\}$	not published
				1875	$1\}_{2}$	
9	Okha Point ...	,	$\left\{\begin{array}{c}\text { re-started } \\ 190 \pm\end{array}\right.$	1906	$1\} 2$	excluded
10	Porbnadar	personal	1893	1894	2	
10A	Porbandar	antomatic	1898	1902	2	Years 1898, $1899 \& 1902$ are excladed
11	Purt Albert Victor (Kāthiāwàr)	personal	1881	1882	1	
11.	Purt Albert Victor (Kāthiāwår)	automatic	1900	1903	4	
12	Bhāvnagar .	"	1889	1894	5	
13	Bombay (Apollo Bandar)	"	1878	still working	50	
14	Bombay (P'rince's Dock)	"	1888	1924	37	
15	Marmagao (Gou) ...	"	1884	1889	5	
16	Kärwă	"	1878	1883	5	
17	Berpore ...	,	1878	1884	6	
18	Cochin	"	1886	1892	6	
19	'Inticorin	"	1888	1893	5	
20	Minicoy	"	1891	1896	5	
$\cdots 1$	Gaile $\quad .$.	"	1884	1890	6	
$\because 2$	Colombo	.	1884	1890	6	
23	Trincomalee ...	"	1890	1895	6	
$\because 4$	Pamban Pass ...	\cdots	1878	1882	4	
25	Negapatam ...	,	1881	1888	5	Years 1883 to 1885 are excluded
-6	Madras		$\left\{\begin{array}{c}1880 \\ \text { re-started }\end{array}\right.$	$\begin{array}{r} 1890 \\ \text { 6till } \end{array}$	$10\} 43$	
	Indras ...	") 1895	working	$33\}$	
27	Cocanāda ...	"	\| 1886	1891	5	
28	Vizaga patam ...	"	1878	1885	6	
29	False Point ...	"	1881	1885	4	
39	Diblat (Sigar Island)	"	1881	1886	5	
31	Diamond Harbonr ..	"	1881	1886	5	
32	Kidderpore ...	"	1881	still working	47	
33	Chittagnng ...	"	1886	1891	5	
34	Akrab ...	,	1887	1892	5	

(Continued)

TABLE 1.-List of tidal stations-(concld).

	Station					Remarks
35	Diamond Island ...	automatic	1895	1899	5	
36	Bassein (Purma ...	",	$\left\{\begin{array}{c}1902 \\ \text { re-started } \\ 1923\end{array}\right.$	$\begin{gathered} 1903 \\ \text { still } \\ \text { working } \end{gathered}$	$\left.\begin{array}{l} 2 \\ 5 \end{array}\right\} 7$	
37	Elephant Point ...	"	$\left\{\begin{array}{c}1880 \\ \text { re-started } \\ 1884\end{array}\right.$	$\begin{aligned} & 1881 \\ & 1888 \end{aligned}$	$\left.\begin{array}{l} 1 \\ 4 \end{array}\right\} 5$	Year 1880.81 is excluded
37A	Pilakat or Deserters' Creek	$\stackrel{ }{ }$	$\begin{gathered} \text { re-started } \\ 1927 \end{gathered}$	1929	1	Observatory damaged and dismantled in July 1928
38	Rangoon ...	\cdots	1880	still working	48	
39	Amherst ...	"	1880	1886	6	
40	Moulmein	"	$\left\{\begin{array}{c}1880 \\ \text { re-started } \\ 1909\end{array}\right.$	$\begin{aligned} & 1886 \\ & 1924 \end{aligned}$	$\left.\begin{array}{c} 6 \\ 16 \end{array}\right\} 22$	
41	Mergui	-	1889	1894	5	
42	Port Blair	1880	1925	45	
43	Basrah	personal	1916	1922	7 7 13	
43 A	Basrah	anto	1922	still	$6)^{1 .}$	

2. Inspections.-Burma.-The tidal observatories at Bassein, Rangoon and Pilakat or Deserters' Creek in Burma, were inspected by Mr. D.H. Luxa, the tidal assistant, between February and Mareh 1928.

Indin.-In addition, Mr. Luxa had intended inspecting the new idal observatory at the Kidderpore Docks, Calcutta, which was to have eplaced the old tidal observatory. The latter had been badly damaged n the 5th November 1927, when a steamer collided with it, necessitaing the immeriate dismantling and removal of the tide-gange and uxiliary instruments. The new observatory, however, was not ready n Mr. Inxa's return from Burma to Calcutta, and as he had to proceed , Rasrah almost immediately, the Deputy Conservator to the Port 'ommissioners, Calcutta, decided to delegate the duty of installing the de-gange in the new observatory to one of the port officials. This as accordingly done and tidal registration recommenced by the 28th ugust 1928.

The Harbour Surveyor, Port Trust Karāchi, carried out an inspection of the tidal observatory at Manora Point, Karächi, in January 1928. The tidal observatory at Apollo Bandar, Bombay, was inspected by the Bombay Port Trust Surveyor in April 1928. No reports have been received from the port authorities at Aden and Madras as to whether the observatories at those places have been inspected or not. These observatories were last inspected by officers of the Survey of India in October and November 1924. Except for minor stoppages, all the tide-gauges have worked satisfactorily.
'Iräq.-The inspection of the tidal observatories in 'Irāq, was carried out as a result of the correspondence which arose between the Home, Indian and 'Irăq Governments, concerning the claim made by the Indian Government for the payment of the costs that had been incurred annually in the computation, preparation, publication and supply of tide-tables for Basrah, which had been held in abeyance for several years. On the 'Iray Government consenting to meet these charges, as well as the cost of inspection of the tidal observatory at Basrah by a Survey Officer, the work was undertaken and the following tidal observatories in 'Iräq were inspected by Mr. Luxa during March and April 1928:-Tanūmah (Basrah), Muttwa, Abädān, Fāo and the Outer Bar Semaphore Observatory on the Shatt-al-'Arab.
3. Tidal observations in the Rangoon river.-The tide-gange installed by Mr. Luxa in the Pilakat or Deserters' Creek near Elephant Point on the 16th March 1927, continued to work quite satisfactorily until 3-30 a.m. on the 18th July 1928, when the tidal observatory was serionsly damaged by a gale, necessitating the immediate dismantling and removal of the tide-gauge. The Port Commissioners, Rangon, being unwilling to incur fresh expenditure on rebuilding this tidal observatory, in view of the rapid erosion that is taking place both in river and the creek, decided to dismantle and return the tide-gauge to Dehra Dūn. The Port authorities are arranging, however, to continue to record the times and heights of high- and low-waters, on a tide-pole, in order to enable comparisons of the results of predictions at Elephant Point to be maxle, and to test whether the regular errors between predicted and actual values noticed at Rangoon from 1922 to 1925 are being repeated at Elephant, Point.
4. Reduction of Bassein tidal observations.-The recristrations of the year 1926 have been fully reduced by harmonic analysis. The results are given in Table 2, where those for 1924 and 1925 are also shown.

TABLE 2.-Talues of the tidal constants for Bassein
1924, 1995, and 1926.

Tide sjmbol	1924**				1925 \dagger				1926*			
	$A_{0}=8 \cdot 330$				$A_{0}=8 \cdot 162$				$A_{0}=8 \cdot 076$			
	R	ζ	H	\boldsymbol{N}	R	5	H	\boldsymbol{H}	R	ζ	H	$\boldsymbol{\kappa}$
Short periorl	feet											
S_{1}	$0 \cdot 178$	149.99	0.078	$149 \cdot 29$	0.060	$160^{\circ} \cdot 50$	0.060	$160^{\circ} \cdot 50$	$0 \cdot 060$	148.13	$0 \cdot 060$	$148 \cdot 13$
S_{3}	$0 \cdot 696$	20.29	0.696	92.29	0.743	91.99	0.743	91-99	$0 \cdot 746$	95.95	0.748	05.95
S_{4}	$0 \cdot 009$	93.86	0.009	93-86					0.013	89.13	0.013	89-13
S_{6}	0.002	$2+2 \cdot 10$	$0 \cdot 002$	$242 \cdot 10$					0.004	154.65	0.004	154.65
S_{8}	0.040	$02 \cdot 03$	$0 \cdot 040$	92.03					0.002	241-70	0.002	241-70
M_{1}	0.030	24.65	$0 \cdot 128$	$267 \cdot 11$					0.018	101.76	0.011	145.51
M_{2}	$2 \cdot 210$	274.64	$\underline{2} \cdot 175$	50.1.4	$2 \cdot 271$	$200 \cdot 36$	$2 \cdot 222$	$51 \cdot 71$	2. 280	101-34	$2 \cdot 256$	53-12
M_{3}	0.022	213.76	0.021	57.01					$0 \cdot 006$	$311 \cdot 10$	$0 \cdot 006$	58.77
M_{4}	0.252	61.04	0.237	$332 \cdot 03$					$0 \cdot 240$	78.76	0.235	342-32
M_{6}	0.092	$198 \cdot 15$	0.08 L	241.65					$0 \cdot 082$	38.37	0.080	$253 \cdot 71$
M_{8}	$0 \cdot 022$	310.87	$0 \cdot 020$	$162 \cdot 87$					$0 \cdot 020$	$38 \cdot 93$	0.019	$206 \cdot 05$
O_{1}	0.142	90.81	$0 \cdot 167$	$45 \cdot 52$	$0 \cdot 148$	1.55	$0 \cdot 164$	34.33	0.104	262-68	$0 \cdot 169$	37-32
K_{1}	0.335	$222 \cdot 05$	$0 \cdot 360$	$46 \cdot 81$	0.344	222-70	$0 \cdot 366$	$45 \cdot 22$	$0 \cdot 358$	$226 \cdot 91$	$0 \cdot 365$	48.21
K_{2}	$0 \cdot 117$	279.05	$0 \cdot 155$	$107 \cdot 62$					$0 \cdot 217$	271-55	0.232	04.37
P_{1}	$0 \cdot 120$	952.03	$0 \cdot 120$	$62 \cdot 42$	0.135	$243 \cdot 55$	$0 \cdot 135$	53-19	$0 \cdot 135$	245-12	$0 \cdot 135$	$55 \cdot 00$
J_{1}	0.02:	293-24	$0 \cdot 025$	93.42	$0 \cdot 009$	$267 \cdot 43$	$0 \cdot 010$	168-19	0.004	$3 \cdot 27$	0.004	351-31
Q1	$0 \cdot 021$	$10 ¢ \cdot 83$	$0 \cdot 024$	81.15	0.0:2	89.50	0.013	$40 \cdot 10$	0.017	64.36	0.017	$28 \cdot 10$
I_{12}	0.21:	109.99	$0 \cdot 187$	$39 \cdot 57$					$0 \cdot 208$	118.40	0.216	74.89
N_{2}	0.781	$250 \cdot 35$	$0 \cdot 372$	$51 \cdot 40$					$0 \cdot 366$	262.67	$0 \cdot 362$	43.55
12	6.1.13	107.36	$0 \cdot 139$	350.96					$0 \cdot 126$	341-96	$0 \cdot 125$	58.47
μ_{2}	$0 \cdot 25.1$	$261 \cdot 70$	0.239	$172 \cdot 39$					0.275	275-02	$0 \cdot 260$	178.58
T_{3}	$0 \cdot 065$	$46 \cdot 01$	$0 \cdot 065$	$48 \cdot 03$					0.132	$48 \cdot 51$	0.182	50.07
(MS$)_{4}$	$0 \cdot 183$	210.97	$0 \cdot 178$	16.47					$0 \cdot 186$	$73 \cdot 86$	$0 \cdot 184$	$25 \cdot 04$
(2SM)	0-198i)	8:3.75	(1.081	$308 \cdot 25$					$0 \cdot 089$	262-25	0.087	$310 \cdot 47$
2 N,	$0 \cdot 1: 32$	113.97	$0 \cdot 134$	$318 \cdot 59$					0.099	98.11	0.098	$68 \cdot 08$
	$0 \cdot 093$	32.35	$0 \cdot 088$	823-95					0.081	247-17	0.082	330-82
(M, K, ${ }_{1}$	0.0.52	317:38	$0 \cdot 1506$	276.74	$0 \cdot 003$	$260 \cdot 80$	$0 \cdot 096$	294.67	$0 \cdot 091$	185-03	0.092	318-11
$\left(2 \mathrm{M}_{2} \mathrm{~K}_{3}\right)_{3}$	$0 \cdot 0.7$	1×7.38	$0 \cdot 0.50$	274.53	$0 \cdot 061$	$26 \cdot 57$	$0 \cdot 062$	266.75	$0 \cdot 004$	$187 \cdot 81$	$0 \cdot 064$	270-10
MıI	$0 \cdot 191$	53.34	$0 \cdot 172$	3.3.77					0.143	$195 \cdot 53$	0.138	6.43
- Mr	$0 \cdot 001$	3:1-41	$0 \cdot 1: 10$	$37 \cdot 10$					$0 \cdot 0.19$	144.26	$0 \cdot 052$	$0 \cdot 76$
岂 Msf	$0 \cdot 226$	$100 \cdot 00$	0.219	60.51					$0 \cdot 229$	357.53	$0 \cdot 227$	15.75
$\stackrel{8}{8} \mathrm{Sm}$	$2 \cdot 301$	2:33.48	2.304	15.3. 10					$2 \cdot 143$	241-72	2.183	161.94
H Lisa.	0.126	88. 12	$\mid 1) \cdot 121 i$	2×7.31					0.116	122.57	$0 \cdot 416$	$322 \cdot 81$

* In 1024 and 1926 harmonic analysis for all components was carried out as for an opicn enast, station,
\dagger In 1925 the analysis was confinod to components as for a riverain port.

5. Corrections to predictions.-Comparison of the predicted times and heights of high- and low-waters with those actually recorded, has indicated that the corrections which were applied to the predictions of Rangoon and Chittagong for 1928, (see Geodetic Report Vol. III) should be repeated for 1929. They have been included in the tide-tables for 1929, and are instead of (and not additional to) the corrections included in the 1927 tide-tables referred to in the Geodetic Report Vol. II.
6. Basrah.-From comparisons between predicted and actual values of times and heights of high- and low-waters from year to year, it was seen that the results were far from satisfactory. The predictions were hitherto based on the tables of monthly means supplied by the National Physical Laboratory, Teddington. These tables were dependent on the results of a few years' observations only, and this fact might have accounted for the large discrepancies in the predictions. With a view to improving the predictions, the tide-tables for 1927 and 1928 received empirical corrections, as regards times only. In the 1927 tide-tables, a correction of +44 minutes was applied to all high- and low-water times, while in the 1928 tide-tables, a variable correction, tabulated for periods of $\overline{5}$ days, of from +10 to +63 minutes was applied. In the course of these attempts to improve the predictions, it was considered necessary to revise the original tables of monthly means, but as neither funds nor staff were available for this purpose, the 'Iräq Government was approached to contribute Rs. 1000/-towards the cost, and on their consenting to do so, the work was undertaken in the following manner:-
(a) Time and Height corrections.-Before comparing the P-A values (Predicted minus actual differences in times and heights of highand low-waters with respect to sign) of one year with those of other years, the following time and height corrections were applied.

Time correction.-The mean correction of +4.4 minutes, derived from the results of 1924-1925, and already applied to the predicted times for 1927, was removed.

Height correction.-A correction of -1.1 feet, due to difference in height between the zeros of the old and new tide-ganges in use at Basrah before and after 1st April 1922, was applied to the $\overline{\mathrm{P}}-\mathrm{A}$ differences in height for 1923.
(b) Trables.-The values of $\mathrm{P}-\mathrm{A}$ for both time and height of high- and low-waters for all the months of each year from 1923 to 1927 were classified according to mean time of moon's transit, and a table of means abstracted. Since we deal with differential cuantities, (excess or defect from the mean time of moon's transit) these mean values were next applied with opposite sign to the original monthly mean values supplied by the National Physical Laboratory.
(c) Time and Height charts.- For the preparation of Time charts, the mean values of $\mathrm{P}-\mathrm{A}$ were applied with opposite sign to the differential quantities in the case of high-water, and with the same sign in the case of low-water.

For the preparation of Height charts, the mean values of $\mathrm{P}-\mathrm{A}$ were applied with opposite sign, both in the case of high- and low-water, to
the original values supplied by the National Physical Laboratory. These corrected monthly mean values (differential quantities in the case of time and actual values in the case of height) were plotted, and 8 charts for high-water and 8 charts for low-water were prepared.

The Basrah predictions for 1929 have been based on these new tables and charts.
7. Tide-tables.-The tide-tables for Basrah and the Indian ports for 1929 were prepared and published. Distribution was completed by October 1928. Advance copies of the 1929 tide-tables for the ports Suez, Aden, Bushire, Karächi, Bhāvnagar, Bombay, Marmagao, Colombo, Trincomalee, Madras, Dublat (Sãgar Island), Chittagong, Elephant Point and Mergui were prepared and despatched to the Hydrographer to the Admiralty by the end of March 1928 for incorporation in the Admiralty tide-tables for 1929. The amount realized by the sale of tide-lables during the year ending 30th September 1928, amounted to Rs. 7,220/2/-, exclusive of agents' commission charges and cost of copies issued gratis.
8. Accuracy of predictions.-From comparisons made between predicted and actual times and heights of high-and low-water, the predictions for 1927 were found to be as accurate as those for the preceding year, except at Kidderpore, where a slight deterioration had taken place, and at Basrah, where the predicted heights did not continue to show the very marked improvement that had been obtained in 1926. On the other hand, improvements in the predicted times at Chittagong, Basrah, Rangoon, and to a lesser extent, at Madras, and Bassein were apparent. The greatest differences between the predicted and actual heights of low-water at the riverain ports were as follows:-

Port	$\left\|\begin{array}{c} \text { Differcnce } \\ \text { (predicted } \\ \text { minus actual) } \end{array}\right\|$	Date
Kidderpore ...	$\begin{gathered} \text { feet } \\ +\quad 3.2 \end{gathered}$	22nd September 1927
Rangoon ...	-2.8	13th October 1927
Pilakat or Desorters' Creek	- 1.6	16th Noromber 1927
Bassein	- 3.4	27th July 1027
Basrah ...	$+3.9$	12th April 1027

Tables 3 to 14 , sive the fortnightly mean errors of the predictions for all stations at which comparisous were made.

TABLE 3.-Mean errors \boldsymbol{E}_{1} and \boldsymbol{E}_{2} for 1927.
ADEN

- E_{1} is with regard to sign: E_{2} is without regard to sign.

TABLE 4.-Mean errors E_{1} and E_{2} for 1927.
BASRAH

* \mathbf{E}_{1} is with regard to sign: \mathbb{E}_{2} is without regnrd to sign.

Note - - The predicted times of high-and low-water have received a correction of +44 minutes.

TABLE .-Mean errors E_{1} and E_{a} for 192%.
Karāchi

PERIOD 1037	MEAN ERRORS (Predicted-actual)											Number olerrors exceediog			
	$E_{1}{ }^{*}$							$\mathrm{E}_{2}{ }^{*}$							
	Time	H. W.	Height	Time	L. W.	Hei	ght	$\frac{\mathrm{H},}{\text { Time }}$	w. int.	$\begin{gathered} \text { I. } \\ \text { Time } \end{gathered}$			$\dot{3}$		
		es	feet		-	f		minutes	feet	minutes	feet	岃	-		
	+	-	+	$+$			-								
Jan. 1.1s		$9 \cdot 0$	0.2	1.4			$0 \cdot 1$	$10 \cdot 7$	$0 \cdot 3$	9.0	0.2	1	0	0	
1631		$4 \cdot 5$	$0 \cdot 1$	1.7		$0 \cdot 3$		131	$0 \cdot 2$	16.4	0.3	1	4.	0	
(iel). 1.15		$1 \cdot 6$	0.3	$1 \cdot 5$		0.0		$7 \cdot 8$	$0 \cdot 3$	$7 \cdot 9$	0.2	0	1	0	0
16.28		$4 \cdot 2$	0.1	0.6		$0 \cdot 1$		10.8	$0 \cdot 3$	$10 \cdot 4$	02	0	1	0	0
Mar. 1-15		32	$0 \cdot 1$	67		0.1		$6 \cdot 5$	$0 \cdot 2$	11.2	0.2	0	0	0	
16-31	$4 \cdot 2$		0.3	6.3			$0 \cdot 1$	$8 \cdot 6$	$0 \cdot 3$	11.2	0.2	1	2	0	0
April 1.15	$2 \cdot 7$		$0 \cdot 1$	$2 \cdot 7$		0.3		$7 \cdot 6$	$0 \cdot 1$	$11 \cdot 1$	$0 \cdot 3$	0	1	0	?
16.30		$2 \cdot 9$	0.2	1.3		0.0		89	0.3	$9 \cdot 1$	0.2	0	2	0	of
May 1-15		0.4.	$0 \cdot 2$		0.2		$0 \cdot 0$	$8 \cdot 4$	$0 \cdot 3$	9.2	0.2	1	0	0	0
16.31		$2 \cdot 0$	$0 \cdot 0$	7.3		0.3		6.9	$0 \cdot 3$	10.2	0.4	0	0	0	
June 1-15		$3 \cdot 2$	$0 \cdot 5$	$0 \cdot 6$			0.4	$8 \cdot 1$	$0 \cdot 5$	$12 \cdot 6$	0.4.	1	2	3	2
16-30		$4 \cdot 0$	$0 \cdot 2$	$2 \cdot 5$		0.2		$6 \cdot 7$	0.2	$12 \cdot 5$	$0 \cdot 2$	0	0	1	0
Jaig 1-15	$2 \cdot 4$		0.2	$4 \cdot 3$		$0 \cdot 0$		$8 \cdot 8$	$0 \cdot 2$	16.7	$0 \cdot 1$	0	5	0	0
16.31	$6 \cdot 0$		0.1	$6 \cdot 2$		0.4		8.2	$0 \cdot 3$	$12 \cdot 0$	0.4.	1	0	0	0
Ang. 1-15	$2 \cdot 7$		0.4	11.6			$0 \cdot 2$	$8 \cdot 9$	0.4	14.7	0.2	0	2	0	0
16-31	$0 \cdot 2$		0.6	$3 \cdot 5$			0.3	$8 \cdot 0$	0.6	$8 \cdot 7$	0.3	0	0	0	0
Sept. 1-15	$7 \cdot 4$		0.2	7.5			0.0	$8 \cdot 5$	$0 \cdot 3$	$9 \cdot 2$	$0 \cdot 1$	0	1	0	0
16.30		1.9	0.6	$5 \cdot 5$			0.4	8.4	06	9•1	0.4.	0	0	5	0
Uct. 1-15	$2 \cdot 1$		0.4	$10 \cdot 1$			$0 \cdot 1$	$8 \cdot 6$	0.4	$11 \cdot 1$	$0 \cdot 1$	0	1	0	0
16-31		0.8	0.4	0.6			$0 \cdot 2$	$8 \cdot 6$	$0 \cdot 4$	9.7	0. 2	1	1	0	
Sov. 1-15		0.61	$0 \cdot 5$	$3 \cdot 5$			$0 \cdot 3$	$10 \cdot 2$	$0 \cdot 5$	$10^{\prime 7}$	03	0	2	2	
16-30		$4 \cdot 0$	0.3	$3 \cdot 8$			$0 \cdot 1$	$8 \cdot 4$	$0 \cdot 3$	11.1	0.2	0	1	0	0
Dec. 1-1.		$1 \cdot 0$	$0 \cdot 5$	0.8			$0 \cdot 4$	$8 \cdot 3$	$0 \cdot 5$	$12 \cdot 4$	$0 \cdot 4$	0	2	0	0
16-31		$5 \cdot 3$	0.2		0.3		$0 \cdot 1$	$9 \cdot 8$	$0 \cdot 3$	$10 \cdot 1$	$0 \cdot 2$	0	1	0	0
Totaca	27.7	$48 \cdot 6$	0.2\|3.5	$90 \cdot 0$	0. 5	$1 \cdot 7$	$2 \cdot 7$	$208 \cdot \mathrm{~s}$	8. 1	$266 \cdot 3$	5-9)	7	29	11	4
Meava...		$\cdot 0$	-0.3					$8 \cdot 7$	$0 \cdot 8$	11.1	0.2		-

[^3]TABLE 6.-Mean errors E_{1} and E_{g} for 192%.
bHĀVNAGAR

* E_{1} is with regard to sign: E_{2} is withont regard to sign.

TABLE 7.-Mean errors E_{1} and E_{2} for 192%.
bombay (apollo bandar)

[^4]TABLE 8.-Mean errors E_{1} and E_{2} for 1927.
MADRAS

- E_{1} is with regard to sign : E_{2} is without regard io sign.

TABLE 9.-Mean errors E_{1} and E_{1} for 1927.
KIDDERPORE

TABLE 10.-Mean errors E_{1} and E_{9} for 1927.
CHITTAGONG

PEHOD 1927	MEAN ERBORS (Predicted—actual)										Number oferrorsexceeding			
													$1 \cdot 0$ feet of beight	
	$E_{1}{ }^{*}$						$\mathrm{E}_{2}{ }^{\text {* }}$							
	Time	H. W.	Height	Time	L. w.	Height	$\underset{\text { I H. We }}{\text { W. }}$		$\underset{\text { Time }}{\text { L. W }}$		5			
		tes	fect	min	tes	feet	minutes		minates	feet	国	\dagger	4	$\stackrel{\sim}{3}$
Jad. 1-15	+	- 4.	+ $\left\lvert\, \begin{gathered}- \\ 0.7\end{gathered}\right.$	$+$	- 3	$+\left\lvert\, \begin{gathered}- \\ 0.5\end{gathered}\right.$	8.9	0.8	$6 \cdot 1$	$0 \cdot 5$	1	0	4	1
16-31	$2 \cdot 3$		0.5	$9 \cdot 4$		0.3	4.5	$0 \cdot 5$	$12 \cdot 1$	$0 \cdot 5$	0	1	1	3
Feb, 1-15	$2 \cdot 2$		$0 \cdot 3$	6.1		$0 \cdot 4$	$7 \cdot 3$	$0 \cdot 7$	$9 \cdot 8$	0.5	0	0	b	1
16-28	$4 \cdot 5$		$0 \cdot 7$	12.7		$0 \cdot 1$	$5 \cdot 4$	$0 \cdot 8$	$13 \cdot 3$	0.7	0	1	5	3
Mar. 1-15	$0 \cdot 2$		$0 \cdot 4$	$6 \cdot 2$		0.0	$8 \cdot 9$	0.5	10.5	$0 \cdot 4$	0	1	1	0
16-31	$5 \cdot 3$		$0 \cdot 2$	$13 \cdot 1$		$0 \cdot 0$	$12 \cdot 1$	$0 \cdot 7$	13.6	$0 \cdot 2$	1	1	2	0
April 1-15	$1 \cdot 1$		$0 \cdot 8$	$3 \cdot 1$		$0 \cdot 7$	$7 \cdot 0$	1.0	$5 \cdot 4$	$1 \cdot 0$	0	0	7	3
16.30		$0 \cdot 7$	$1 \cdot 2$		$3 \cdot 5$	$0 \cdot 7$	$9 \cdot 0$	$1 \cdot 3$	$4 \cdot 7$	1.2	0	0	9	6
May :-15		7.11	$0 \cdot 1$		6.0	$0 \cdot 0$	$9 \cdot 3$	$0 \cdot 9$	$7 \cdot 2$	$0 \cdot 6$	0	0	6	2
16-31		0.5	$0 \cdot 1$	$6 \cdot 2$		$0 \cdot 4$	$5 \cdot 3$	$0 \cdot 4$	10.9	$0 \cdot 4$	0	3	0	1
June 1-15	$5 \cdot 5$		$0 \cdot 3$		$0 \cdot 1$	0.5	$7 \cdot 3$	$0 \cdot 5$	$4 \cdot 9$	$0 \cdot 6$	0	0	1	3
16.30		2.4	0.1		$2 \cdot 7$	$0 \cdot 1$	$7 \cdot 7$	$0 \cdot 7$	6.5	$0 \cdot 5$	0	0	2	2
July 1.15		$6 \cdot 3$	$0 \cdot 0$		4.7	$0 \cdot 1$	$7 \cdot 4$	$0 \cdot 4$	7.6	$0 \cdot 2$	0	0	1	0
16-31		$6 \cdot 3$	$0 \cdot 1$		$3 \cdot 4$	$0 \cdot 1$	$6 \cdot 6$	$0 \cdot 5$	8.1	0.3	0	0	2	0
Ang. 1-15		$2 \cdot 7$	$0 \cdot 1$		0.0	0.2	$5 \cdot 0$	$0 \cdot 5$	$8 \cdot 1$	$0 \cdot 3$	0	0	1	2
16-31		11.9	$0 \cdot 2$		$8 \cdot 6$	0.2	11.9	$0 \cdot 5$	$9 \cdot 0$	$0 \cdot 3$	0	0	0	0
Sepr, 1-15		$7 \cdot 9$	$0 \cdot 3$		$8 \cdot 1$	$0 \cdot 6$	$9 \cdot 0$	0.6	9.9	$1 \cdot 1$	0	1	4	9
16-30		8.5	$0 \cdot 6$		$10 \cdot 9$	$0 \cdot 2$	11.5	$0 \cdot 6$	$10 \cdot 9$	$0 \cdot 6$	0	1	I	1
Oct. 1-15		8.4	$0 \cdot 8$		$3 \cdot 4$	$0 \cdot 6$	$4 \cdot 9$	0.9	$4 \cdot 2$	$0 \cdot 1$	0	0	c	2
16.31		9.7	$0 \cdot 3$		13.6	$0 \cdot 1$	$11 \cdot 6$	$0 \cdot 7$	$13 \cdot 6$	$0 \cdot 7$	0	1	1	:
Nov. 1-1:		8.9	$0 \cdot 0$		13.9	0.4	$11 \cdot 6$	$0 \cdot 4$	$14 \cdot 3$	$0 \cdot 4$	1	1	0	(
16-30		7.9	$0 \cdot 6$		8.4	$0 \cdot 1$	$10 \cdot 1$	$0 \cdot 7$	$10 \cdot 8$	$0 \cdot 3$	0	0	3	0
Dec. 1-15		10.8	0.5		9.1	$0 \cdot 2$	$11 \cdot 3$	$0 \cdot 5$	$10 \cdot 5$	$0 \cdot 3$	0	0	-	0
16-31		$13 \cdot 1$	$0 \cdot 3$		13.6	$0 \cdot 2$	$13 \cdot 1$	$0 \cdot 3$	13.6	$0 \cdot 3$	0	5	1	0
Totaia.	$21 \cdot 1$	$13 \cdot 10$	0.8	56.8	$113 \cdot 6$	$1 \cdot 3$	2C6.7	$15 \cdot 1$	225.5	$12 \cdot 5$	3	11	63	42
Means...		$3 \cdot 8$	-0.3		$2 \cdot 4$	-0.2	$8 \cdot 6$	$0 \cdot 6$	9.4	$0 \cdot 5$...

* F_{1} is with regard to sign: F_{2} is withoat regard to sign.

Note:-Predicted times have received n correcthon of +10 minates, and predicted low-water heigits a oorrection of +0.6 of a foot.

TABLE 11.—Mean errors E_{1} and E_{9} for 1927.
AKYAB

* E_{i} is with regard to sign : E_{a} is without regard to sign.

TABLE 12.-Mean errois E_{1} and E_{0} for 1927.
RANGOON

* E_{1} is with regard to sign: E_{2} is without regned to sign.

TABLE 13.-Mean errors E_{1} and E_{2} for 1937.
pilakat or deserters' creek

[^5]TABLE 14.-Mean errors E_{1} and E_{1} for 1927.
BASSEIN

PERIOD 1927	MEAN ERRORS (Predicted - actual)											$\left\lvert\, \begin{gathered} \text { Nuwber uf } \\ \text { errors erceeding } \end{gathered}\right.$			
	E_{1} *							E, *						$\stackrel{0 \cdot 6}{6}$ neigh	
	Time	H. W.	Heigh1	Time	L. W.	He	bt	$\underset{\substack{\text { H. We }}}{\text { Cimen }}$	${ }^{\text {Hit. }}$	$\overline{\text { Lime }}$	$\overline{V_{\mathrm{Ht}} .}$				
	min	${ }^{\text {e8 }}$	feet	"in	18			mıй*		m'n"'m		\pm	-	\dot{T}	$\stackrel{ }{-}$
Jan. 1-15	+	$\begin{aligned} & - \\ & 0.0 \end{aligned}$	$+\left\lvert\, \begin{gathered}- \\ 1.0\end{gathered}\right.$	+	$15 \cdot 4$	+	- 0.6	16.5	$1 \cdot 0$	$15 \cdot 4$	0.6	4	0	27	3
16-31	11.5		$0 \cdot 9$	$9 \cdot 7$		0.2		$22 \cdot 0$	0.9	19.7	$0 \cdot 4$	10	1	18	0
Feb. 1-15	4.9		$0 \cdot 6$	$3 \cdot 0$		$0 \cdot 3$		I1.7	$0 \cdot 6$	3.0	$0 \cdot 3$	4	0	11	0
16-28	$23 \cdot 5$		0.5	$12 \cdot 0$		0.9		$24 \cdot 8$	$0 \cdot 5$	23.5	$0 \cdot 9$	8	6	9	18
Mar. 1-15		$1 \cdot 1$	$0 \cdot 3$		$25 \cdot 2$	0.5		$13 \cdot 2$	$0 \cdot 3$	$30 \cdot 4$	0.5	1	15	0	7
16-31	$13 \cdot 4$		0.6	$1 \cdot 7$		$0 \cdot 5$		17.0	$0 \cdot 6$	23.2	$0 \cdot 5$	6	4	13	10
April 1-15		$1 \cdot 0$	0.8		$21 \cdot 7$		0.2	$16 \cdot 0$	0.8	$24 \cdot 9$	$0 \cdot 3$	3	13	26	0
16-30	$26 \cdot 1$		$0 \cdot 7$	$11 \cdot 1$		$0 \cdot 3$		$20 \cdot 1$	$0 \cdot 7$	15.8	$0 \cdot 4$	s	6	15	9
May 1-15		$3 \cdot 1$	$1 \cdot 0$		31.8		$0 \cdot 3$	126	$1 \cdot 0$	$33 \cdot 2$	0.5	1	15	25	11
16-31		J.1	$0 \cdot 8$		18.9		$0 \cdot 3$	$13 \cdot 0$	$0 \cdot 8$	$19 \cdot 1$	$0 \cdot 4$	1	7	20	5
June 1.15		6.5	$0 \cdot 5$		22.7	$0 \cdot 1$		$15 \cdot 2$	$0 \cdot 5$	$26 \cdot 3$	$0 \cdot 5$	2	11	8	8
1630	$2 \cdot 4$		$0 \cdot 5$		$16 \cdot 7$		$0 \cdot 1$	12.5	0.i	17.5	0.4	0	4.	8	3
Jaly 1-15	$5 \cdot 5$		$0 \cdot 1$		19.4	$0 \cdot 2$		$16 \cdot 2$	$0 \cdot 3$	19.4	$0 \cdot 3$	5	8	3	1
1631		$11 \cdot 2$	$0 \cdot 0$		$22 \cdot 6$		13	$20 \cdot 8$	$0 \cdot 4$	$22 \cdot 6$	1-4	7	8	5	22
Ang. 1-15,		14.9	$0 \cdot 3$		21.2		1.2	22.7	$0 \cdot 4$	$22 \cdot 1$	1.2	8	5	4	28
10.31		8.8	0.7		$24 \cdot 3$		$0 \cdot 7$	11.8	$0 \cdot 7$	24.4	0.7	2	9	20	16
Sept. 1-15	$0 \cdot 5$		$1 \cdot 1$		22.0	$0 \cdot 1$		$11 \cdot 3$	$1 \cdot 1$	23.8	(1. 5	1	11	29	0
10.30		116	$0 \cdot 0$		$29 \cdot 1$		0.5	$16 \cdot 2$	$0 \cdot 6$	$29 \cdot 8$	0.9	5	13	12	19
Oct. 1-15		11-2	0. 2		$20 \cdot 6$		$2 \cdot 7$	16.1	03	24.6	$2 \cdot 3$	3	14	2	$\because 9$
16.31		18.9	$0 \cdot 6$		4.4 .2		$2 \cdot 0$	20.9	$0 \cdot 6$	44.2	$2 \cdot 0$	8	20	14.	31
Niv. 1-15		$5 \cdot 4$	0.7		38.1		1-2	13.1	1. 7	38.3	$1 \cdot 2$	3	23	18	27
16.30		24.4,	1.0		$52 \cdot 3$		$0 \cdot 5$	21.4	1.0	$52 \cdot 3$	0.5	9	21	29	6
Dec. 1-1.		14.6	0.8		35.8		0.3	116.8	$0 \cdot 8$	35.8	0.4	5	22	29	8
16-31		$6 \cdot 7$	0.5		$52 \cdot 8$	0.4		11.5	$0 \cdot 5$	528	0.4	2	5	10	0
lotale ...	87.8	$141 \cdot 1$	$2 \cdot 7 / 12 \cdot 1$	$37 \cdot 5$	534.8	3.5	11-\%	$40 \cdot 4$	15.1	$64 \% \cdot 1$	$17 \cdot$	106	45	348	272
Means ...	- 2		-0.4	- 20			$0 \cdot 3$	16.8	$0 \cdot 7$	$46 \cdot 8$	$0 \cdot 7$. 1

[^6]
Chapter IV

GRAVITY AND DEVIATION OF THE VERTICAL

by Major E. A. Glennie, d.s.o., r.e.

1. Pendulum Apparatus of the Survey of India.-

 This season a new pendulum apparatus has been brought into use. This is the third type of apparatus used in India. The three types are : -(i) The Basevi apparatus, in use from 1865 to 1873 (wide G.T.S. Vol. V.)
(ii) The Survey of India Potsdam (1902) apparatus, in use from 1902 to 1925 (vide Professional Papers Nos. 10 and 15).
(iii) The Survey of India Cambridge (1926) apparatus, now brought into use.
The Basevi apparatus was used by Captains Basevi and Heaviside, observations being made at thirty stations in India from Cape Comorin to the Moré Plain ; but, in spite of the meticulous care with which these observations were made, later experience has led to the rejection of all the results.

The reason for this is that no correction was made for the sway of the apparatus, due to the motion of the pendulum. Sway of the apparatus increases the time of vibration of the pendulum. If the sway were the same at all stations, no error in the deduced value of gravity would result. This is, however, by no means the case, as is clearly shown in \$138 of Geodetic Report Vol. I, page 178. Hence, no correction having been made for sway, all results in India prior to 1904 are unreliable.

The modern series of Gravity Observations in India was initiated with the Potsdam (1002) apparatus. As in the case of the Basevi apparatus, only one pendulum can be swung at a time, but a correction (the "flowure" correction), was applied to compensate for the sway caused by the motion of the pendulum. This correction was determined by a special "flexure" observation, made several times at each station.

Though the "flexure" observation provided a satisfactory correction for sway due to pendulum motion, it did not correct for sway effects due to actual ground motion, i.e. not caused by the pendulum. In fact, if the ground is appreciably in motion, the "flexure" observation rannot be made. At Calcutta in 1904 the observations had to be abandoned owing to ground motion.

The Survey of India, Cambridge (1926)
Pendulum Apparatus (without cover)
A. Arm to release front and back pendulums
B. Lever to raise or lower all three pendulums
C. Back pendulum
D. Middle pendulum
E. Front pendulum
F. Back adjustable mirrors
G. Window for reading thermometer and manometer

In 1923 Dr. F. A. Vening Meinesz published his able treatise on the theory of pendulums ("observations de pendule dans les Pays Bas"). He had been led to make a detailed investigation owing to the fact that in many places in Holland the ground is constantly in motion.

Dr. Vening Meinesz showed theoretically that, if two nearly isochronous pendulums were swang simultaneously on the same stand, and the changes in their phase-differences and amplitudes taken into account, the times of vibration, unaffected by ground motion, could be obtained. The same method also eliminated sway effects due to the motion of the pendulums.

In the following year he showed in practice the truth of his theories by a remarkable series of gravity determinations at sea, during a voyage in a submarine to Java. His gravity determinations in the Indian Ocean are shown in Table 6.

These results led Colonel Sir G. P. Lenox Conyngham, f.r.s., formerly Superintendent of the Great Trigonometrical Survey of India, and now Reader in Geodesy at Cambridge, to design a new apparatus for the gravity base station established by him at the Cambridge Observatory. The apparatios, so designed, was constructed by the Cambridge Instrument Company and proved entirely satisfactory. In 1926 one was ordered for the Survey of India, which is now designated the Survey of India Cambridge (1926) apparatus.
2. Description of the Survey of India Cambridge
(1926) apparatus.-The apparatus consists of a massive gun-metal box, in size $1 \frac{1}{2} \mathrm{ft}$. long, 9 in . wide and 1 ft . high, without the cover, which is semi-circular in section. When the cover is in position, the box can be hermetically sealed, and the pressure inside reduced. The box is divided by metal partitions into three compartments, one for each pendulum.

The three pendulums are placed in the box, each resting on t wo agates, the top surface of all six agates being carefully ground in position, so as to be all in the same plane.

The thre pendulums are five inches apart, and can all swing in the same vertical plane, parallel to the long axis of the box.

Durimg observations, the centre pendulum is held still by a leverpressing on it:; bob, so as to give it a slight tilt; the two mirrors on its knife-heall form part of the optical system to be described later. 'The two outer pendulams can be given the required initial tilt by two levers, which are intereonnected, so that one quick motion of a single arm A, (mide Plate VI) releases the levers, and sets the two pendulums swinging with a phase-difference of 180°.

The pendulums can be raised off the argates, when observations are not being made.

A plate-glass window in the cover enables the pendulums to be observed, and another, at one side of the box, permits the reading of a thermometer, placed in a dummy pendulum, and of a small mercury manometer, both inside the box near the back pendulum.

The construction of the flash-box and method of observing the flashes and reading the amplitudes are exactly the same in principle as those employed with the Potsdam apparatus in India since 1904, and described in Professional Paper No. 10. 'The flash-box is however lighter in design, and the observing telescope is on a separate stand, as the optical system requires it to be placed about six inches above the flashbox. The diaphragm of the telescope has two horizontal wires, one of which is used for the front pendulum, and the other for the back pendulum.

The optical system is shown in the diagram below and is as follows:-
Diagram of optical system

Two adjustable mirrors, one above the other are set at the back of the pendulum box; each pendulum has two mirrors on either side of its knife-head which are inclined to the stem of the pendulum at a slope of 1 in 12.

The Hash from the flash-box travels as follows:-
(i) Front pendulum.-Flash-box to upper adjustable mirror, thence to back mirror of front pendulum, thence to front mirror of centre fixed pendulum, thence to observing telescope.
(ii) Back pendulum.-Flash-box to lower adjustable mirror, thence to back mirror of fixed pendulum, thence to front mirror of back pendulum, thence to telescope.
Any of the three pendulums can be used as the fixed pendulum, and in practice two different pairs of outer pendulums are observed at ench station.
3. Observations.-'There is no essential change in the method of observation. First a series of coincidences of the front penclulum is recorderl, followed immerliately by a series of the back pendulum; then, after an interval, a second series, is recorded for each. Before and after each series, the amplitudes, dummy thermometer, and manometer are rearl.

As the pendulums are nearly isochronous, they can swing for periods as long as eight hours without their phase-difference changing foo much, so that the pentulums can be swomg practically continuously between time signals, thus almost entirely eliminating errors due to irregular fluctuations of clock rate. Observations for a pair of pendulams are completed in 36 hours, six time signals being received in this period (i.e. three from Rugby and three from Bordeaux).

Fig. 1

Detail of Cambridge (1926) Pendulum

Full size

4. Sway correction.-Since the pendulums swing in opposite phases, there is normally no sway of the apparatus due to the motion of the pendulums, but the observations require scrutiny to see whether ground-motion corrections have to be applied. These corrections can be computed from the ordinary observations; no special sway observations are required.

5. Pendulums of the Survey of India.-The pendulums

 which have been used in India are :-(i) Seconds pendulums used with the Basevi apparatus:-
(a) Kater's invariable pendulums Nos. 4 and 1821 in use from 1865 to 1871 .
(b) Russian reversible pendulums Nos. I \& II used in 1873.
(ii) The four brass, Potsdam (1902), pendulums, used since 1902 with the Potsdam apparatus. These are numbered 137 to 140 . Mean time of vibration $0 \cdot 50725 \mathrm{~s}$.
(iii) The three brass, Dehra Dūn (1924), pendulums, numbered 1 to 3 and used in Kashmir in 1925. The knife-edges of Nos. $2 \& 3$ have deteriorated. Mean time of vibration $0 \cdot 50731 \mathrm{~s}$.
(iv) The nickel-steel Cambridge (1926) pendulums, now in use with the Cambridge apparatus. These are lettered A, B, C. Mean time of vibration 0.511795 s .
6. Description of the Survey of India Cambridge (1926) pendulums.-Quartz pendulums having been found too fragile in 19:4 (wide Geodetic Report Vol $1 \$ 126$), the late Lt.-Colonel H. McC. Cowie, n.w., then in England, ordered three nickel-steel pendulums from the Cambridge Instrument Company for use with the Survey of India Potsdam apparatus. In 1926 these were ready, but the knifeheals had to be changed, so as to be suitable for the Cambridge apparatus, the chicf difference being the provision of two mirrors inclined to the pendulum stem. A pendulum is shown in detail in lig. 1, Plate VII.

The bob, stem and stirrup at the top for holding the kinfe-head are all in one piece of nickel-steel. Nickel-steel was chosen since the coefficient of expansion of this alloy, when suitably proportioned, is exceedingly small. The confficient of expansion of these pendulums is +0.00000167 per dearee Centigrade, whereas that of the brass Survey of India Potsdan (1902) pendulums, formerly in use, is +0.00001934 per degree Centigrade. Hence the new pendulums are much less affected by temperature changes.

The knife-head is of stellite, a material of great hardness, which can be polished sufficiently to form a good metal mirror. The knifehead is permanently fixed by means of conical wedges in the stirrup under lydraulic pressure.
7. Adjusting the length of the pendulums.-The new apparatus requires the pendulums to be as nearly isochronous as possible. On receipt of the pendulums from the makers the differences in time of vibration were found to be as follows :-

$$
\begin{array}{lr}
\mathrm{B}-\mathrm{C} & 28^{\circ} \times 10^{-7} \\
\mathrm{~A}-\mathrm{C} & 368^{\circ} \times 10^{-7}
\end{array}
$$

This compared very favourably with the Potsdam pendulums previously in use, two of which differed by as much as $4105^{5} \times 10^{-7}$, whilst the smallest difference was $716^{s} \times 10^{-7}$. Closer equality was considered necessary for the Cambridge pendulums. This was attained by grinding the flat base of the bob of the longest pendulum on a sheet of fine carborundum paper, lubricated with kerosine oil and laid on a flat plate of glass. After about three minutes grinding a series of coincidences was observed, and finally, when near the right length, a complete observation lasting about one hour was necessary between each grinding. Thus the whole operation of obtaining close isochronism was long and tedious, and took about a fortnight of fairly continuous work. The greatest departure from isochronism is now $11^{5} \times 10^{-7}$.
8. Determination of correction factors.-The next step was to determine the correction factors.

These are :-(1) the density factor, k.
(2) the temperature factor, k.

This was done at the pendulum house of the Cambridge Observatory, kindly lent for the purpose by Colonel Sir G.P. Lenox Conyngham, who, during the course of the work, gave much valuable assistance and advice.

In order to save time and eliminate clock-rate errors as far as possible, a Von Sterneck pendulum apparatus with a single pendulum was set up alongside the Cambridge apparatus, and all observations of the pendulums under test were bracketted between observations to a brass pendulum No. 38), whose density and temperature factors were known.

By subtracting the observed time of vibration, S_{A}^{1} (or $S^{1}{ }_{B}$ etc), of the pendulum under test from that of No. 38, $\left(S_{39}\right)$, reduced for temperature and density, we get the relation:-
$S_{35}-S_{A}^{1}=\left(S_{39}-S_{d}\right)-k_{A}^{\prime} D-k_{A} T-F$, where F is the sway correction for the Cambridge Pendulums. This is zero, when two pendulums are swing simultaneously, and can be determined, when one pendulum only is swung, by means of a special flexure observation. $\left(S_{3 y}-S_{\lambda}\right)$ is a constant, depending on the two pendulums 38 and A. $k_{\Lambda}^{\prime} I$ and $k_{\Lambda} T$ are the density and temperature corrections for pendulum A, similar expressions applying to pendulums B and C .

The equation involves three unknowns, so three groups of observations were arranged with the Cambridge apparatus under differeut conditions. These were:-

G group-Atmospheric pressure \& low temperature
H ," - do. do. \& high temperature
L " - Reduced pressure \& low temperature.
The low temperature was the room temperature. The high temperature was obtained by placing an electric bulb in the front compartment of the Cambridge apparatus and ubserving to one pendulum only, at a time, placed in the back compartment. The apparatus was covered with a blanket, to reduce loss of heat, and observations started about 18 hours after the bulb had been lighted, when the apparatus had reached a fairly constant temperature. The bulb remained lighted during the observations.

In this case sway correction had to be determined, and was found to be $6^{8} \times 10^{-7}$.

Details of the observations are given in Table l. By the method of least squares, the values of $k \& k^{\prime}$ were obtained for the three pendulums from these three groups of observations.

The constants obtained were:-
Pendulum A
A B
C
$\left.\begin{array}{llll}\text { Temperature factor }(k) & 4^{s} \cdot 4 \pm 0 \cdot 27 & 4^{s \cdot} \cdot 4 \pm 0.20 & 4 s \cdot 2 \pm 0 \cdot 26 \\ \text { Density factor } & \left(k^{\prime}\right) & 669 \pm 5 \cdot \tau & 664 \cdot 5 \cdot 0 \\ 660\end{array}\right)+4 \cdot 7$

| Density factor | $\left(k^{\prime}\right)$ | $669 \pm 5 \cdot 7$ | 664 |
| :--- | :--- | :--- | :--- | :--- |
| $\pm 5 \cdot 0$ | 660 | | | $4 \cdot 7$

The unit is the 7th decimal place of a second of time. For comparison, the constants of the brass Potsdam (1902) pendulums are given below, in the same units:-

Pendulum No.	137	138	139	140

Temp. factor $49^{s \cdot 2} \pm 0 \cdot 1 \quad 48^{s \cdot 9} \pm 0 \cdot 2 \quad 49^{s} \cdot 1 \pm 0 \cdot 2 \quad 48 \cdot \cdot 9 \pm 0 \cdot 1$

$$
\text { Density factor } \quad 594 \pm 2 \cdot 5 \quad 572 \pm 6 \cdot 5 \quad 606 \pm 1 \cdot 0 \quad 606 \pm 1 \cdot 7
$$

9. Reduced time of vibration at Cambridge and deduced value of gravity at Dehra Dun.-With a view to redetermining the value of g at Debra Dūn, the L group of observations were observed between wireless time signals (Paris rhythmics), so that the reduced value S_{0} of the time of vibration at Cambridge could be obtained.

The value of g at Cambridge is $981 \cdot 265 \mathrm{~cm} / \mathrm{sec}^{2}$, obtained independently by Dr. F.A. Vening Meinesz from Potsdam, and by Sir G. P. Lenox Conyngham from Kew. On arrival in India the pendulums were swung at Dehra Dūn in November 1927. The results are tabulated below:-

Stat		te	A					
			s		*		s	
Cambricke	May	$19 \div 7$	0.507	3945	$0 \cdot 507$	2861	0.507	8855
Dehan Dîn	Nov.	1927		9526		9537		9534
Difference			- 5691		-5676		-5079	
Deduced value of g at I elira Dūn			979.0715		979.0732		$\begin{gathered} 979 \cdot 0722 \\ \mathrm{~cm} / \mathrm{sec}^{2} \end{gathered}$	

10. Observer.-All the above observations and the isochronization of the pendulums were done by Major E. A. Glennie.
11. Wireless receiving set.-In order to receive wireless time signals with certainty in India, a highly efficient wireless receiving set was obtained. 'This set was the R.P. 11, specially designed by the Marconi Wireless Telegraph Company for time signal reception at wave lengths of over 15,000 metres.

It has 4 valves with a 3 -foot square frame aerial, and consists of a detector, a note-filter amplifying stage, a plain note magnifier stage and a local oscillator. With this, no difficulty is experienced in receiving time signals in India from Rugby, Bordeaux and Nauen, though signals from Nauen are rather faint. The directional properties of the trame aerial enables atmospherics to be greatly reduced.

A device, known as the "phazing unit" P. B. 1 with a fifth valve, can be coupled to the receiver, bringing in a small vertical aerial 30 ft . high. This gives increased directional properties, and was intended to further eliminate atmospherics. In practice its use gives a great increase in the volume of sound, but atmospherics are not reduced, and, if there are thunder-storms near by, the time signals are best received without the phazing unit. A picture of the wireless set is given in Plate VIII.
12. Field Season 1927-28.-The field season was planned to extend our knowledge of gravity and the geoid to the extreme northwest borders of India, and also to discover whether any exceptional Hayford gravity anomalies would be found in the neighbourhood of the Hämün-i-Mäshkel in the Chägai district, upper Baluchistān.

The party took with it a large prismatic astrolabe, so that astronomical latitudes and longitudes could be obtained. The field season's work is conveniently divided into two main portions, which are described below:-

I. Observations in Las Beln State and Sind.

Stations.-Observations were made at seven stations on a line running roughly from west to east through Karāchi, (the line extending from Chandragup, 150 miles west, to Kakeja, near the Rann of Cutch, 100 miles to the east of Karāchi) as well as at Hyderäbād (Sind).

Observations were first made at Karāchi, while camels were being collected by the Wazir of Las Bela for the journey to Chandragup. These camels proving satisfactory, they were retained for the whole time until the party entrained at Badin for Hyderäbãd.

Nature of the country.-Las Bela, though very sandy and dry, presented a charmingly variable type of scenery, and abounded in small game. Ibex and panther are plentiful in the low Haro Range, west of the Relu station.

Chandragup, which is a triangulation station of the Makrian Coast series of 1596, turned out to he an active mud volcano, and, in the hills around are numberless mud cones, some of them active. An exceptionally big one over 1,000 feet high is shown in the back ground of Plate IX. In the foreground can be seen the valley, filled with mud,

The Wireless Receiving Apparatus

Photo, -engraved and printed at the Offices of the Survey of India, Calcutta, 1029

> Mud Volcano in the Häro Range, làs Bela State, with "mud glaciers"

Photo-engraved and printed at the Offices of the Surves of India, Calcutta, 1929

The Kalindi Oasis, HĀMūn-I-MĀshkel

Photo -encraved \& veinted at the Offices of the Survev of India, Calcat 1 , 1029
which being impregnated with hygroscopic salts, remains plastic and flows exactly like a glacier.

Oil was seen on the surface of a stream in this neighbourhood. The Sind country, in comparison with Las Bela, was most uninteresting, mainly a flat clayey plain.

II. On the Nushki-Duzdap railway extension and in the nelghbourhood of the Hamun-i-Mashkel

Stations.-Observations were made at five stations on the railway more or less equally spaced from Nushki to Warechah. The Hāmūn-iMãshkel stations were spaced about twelve miles apart on a line run roughly north from Galugah Fort across the east end of the depression.

Special reasons for observations in the Hāmūn.-The Hàmūn-iMãshkel area was specially selected by the Surveyor General for gravity observations, because the topographical surroundings were similar to those of Seattle in America, where exceptionally large negative Hayford anomalies have been found and Brigadier Tandy was of opinion that, if similar anomalies were found in this region, some progress towards the solution of the problem raised by them might be made. The observations however show conclusively that there are no exceptional anomalies in this region.

The Hämun-i-Māshkel itself is a vast expanse of saltpetre. Only a narrow arm of this at the eastern end, known as the Wadi-i-Sultann, was crossed by the party. For about six hours the party crunched through a white efflorescence of saltpetre, gleaming like snow in the moonlight.

South of the Hämūn the ground rises rapidly to the hills. On the north, for 1.) miles or more, it is flanked by a flat desolate plain of light salt-impregnated soil, covered thickly with small black pebbles; then the ground rises abruptly a hundred feet in an escarpment to a plain, which slopes gently northwards. The black pebbles are a very pleasant feature, since, as a result, there is no glare.

Everywhere there are signs of volcanic activity, the active voleano Koh-i-Thiftan, over 13,000 feet high, is to the west; to the north is Miri Siltan, which is apparently a great cinder cone.

It seems likely that this is an area of sulbsidence resulting from the volcanic ontpourings round it. In the part traversed by the parly, except for a line of high sand dunes near Galugal Fort, there is practically no sand. The area round Rahro is fertile and cultivated, the population migrating to the fertile date groves of Latlyasht for the liot weather.

Water suphly in the Hamun area.-It was most fortunate that exceptional rains occurred, filling the water-hokes a fortnight hefore the party futered tinis area. The water was green and very lively, but no ill health resulted, At the Wadi-i-Sultan station, water liaul to be carried to the camp from the Kalandi spring, 15 miles away.

Climettic conditions in the Hйmй area.-Remarkable changes in temperature occur at this time of the year, thus on the 3rd of March the maximum day temperature was over 90° in the shade and the
night was oppresssively hot, but, two days later, there was an icy wind from the west and the temperature at noon was barely above freezing point in the shade. During the next week there was frost at night, 8° of frost being recorded on two occasions, after which it again became hot.

Visibility.—Owing to sand haze visibility in the Hāmūn area was very limited, so that resections from points on the distant mountains were not possible. The astrolabe was used to give the position of the gravity stations astronomically, except at Galugah, which was close to a triangulated point, and heights had to be estimated. This was easy owing to the extreme flatness of the country, so that the estimated heights are not likely to be as much as 20 feet in error. Local thunderstorms made barometric pressure very variable, so barometric or bypsometric heights could not be relied on.

Escort.-As there was danger of raiding from lawless bands from across the Persian border, an escort of eighteen tribal levies was provided for the party. This escort and the camel men were a very cheery lot, in marked contrast to those in Las Bela, and the marches were enlivened with song throughout the night.

They were remarlable athletes; several could clear a height of over five and half feet with a bad take off. 'They were however poor marksmen, a two-foot square target remaining nearly intact after about a hundred rounds had been fired at it from a distance of a hundred yards. The party was undisturbed by raiders.
13. Strength of party, transport and health.--The party consisted of two officers, a clerk, two computers and 24 khalasis. The gravity and astronomical observations were done by Major E.A. Glennie and Mr. B.L. Gulatee, b.a.

Camel transport was employed throughout the season. Owing to the heat and arid nature of the country the party nearly always marched at night, frequently striking camp at 5 p.m. and reaching the next camp at $8 \mathrm{a} . \mathrm{m}$. or later; and then observations would commence at nightfall the same day.

Except for some fever at Hyderabid, health was excellent.
14. Clock rates.-The clock used for gravity work was the Stiasser and Rolude pendulum clock No. 238. This had been overhauled at the Mathematical Instrument Office, Calcutta, after the Kashmir seavon, and gave excellent results.

The rates were oblained by getting time signals twice daily from Bordeaux, and twice daily from lugby, the times of receipts of signals, in Indian Standard Time, being:-

$$
\begin{array}{ll}
\text { Bordeaux } & 1.30 \mathrm{p} \cdot \mathrm{~m} . \text { and } 1.30 \mathrm{a} . \mathrm{m} . \\
\text { Rugby } & 3.30 \mathrm{p} . \mathrm{m} . \text { aud } 11.30 \mathrm{p} . \mathrm{m} .
\end{array}
$$

A relay was used to break the ear-phone circuit of the wireless receiver, so that the signals vanished, as coincidence with the clock beats approached, the first wireless signal after the silent period marking the coincidence.

Reg. No. 1811 D.D.D. 1929 (C.O.)-S. I-
REFERENCES
Gravity Stations season 1927-28 previous seasons Free air Gravity anomalies

Scale $\frac{1}{5,000,000}$ or $1 \cdot 014$ Inches to 80 Miles

$$
\begin{array}{ccccc}
\text { Miles } 50 & 25 & 0 & 50 & 100 \\
& 1 & 1 & 1 & \\
& & 1 &
\end{array}
$$

Note:- Height Contours are in feet and show average heights or depths.

Helio. S. I.O. Dehra Dün
Hayford gravity anomaly contours

15. Pendulum results.-The differences between individual and mean pendulums are shown in Table 2.

Times of vibration at Dehra Dūn are given in Table 3, and mean times of vibration and deduced values of g in Table 4. A summary of results is given in Table 5, which also includes all other modern gravity observations in India, arranged by seasons. "The average height map of India" (vide (Geodetic Report Vol. 1. § 150), now approaching completion, was used to get out the effects of topography and isostatic compensation for all Hayford zones outside a radius of 32 miles, and saved an immense amount of labour.
16. Astronomical observations.-At all stations a programme of astronomical observations was carried out, using the large prismatic astrolabe. The positions of three stations in the Hāmūn-iMāshkel area (viz Hāmūn, Rahro, and Wadi-i-Sultān), which, owing to bad visibility, could not be fixed by theodolite resection, were obtained in this rway.

At other stations the observations give the deflections of the plumbline in the meridian, and prime vertical.

The astronomical programme usually consisted of about four hours work on three or four consecutive nights at each station, and was. planned to give about twenty groups of stars.

The clock used was a break-circuit chronometer No. 12831 by Messrs T. Mercer \& Co. of St. Albans. The pendulum clock was not used, so that the star programme could be carried out without any interruption to the pendulum work. The star clock was compared each evening with the pendulum clock, as the latter was used for the wireless time siguals. A portable drum chronograph by the same makers was employed for the star ohservations and the clock comparisons.
17. Results.-There has not been sufficient time in recess to complete the astronomical results rigorously. Deflections have been got out hastily by the graphical method from two or three groups of stars only at cach station.

Chast V shows in figures the free-air gravity anomalies and by contours the Hayford gravity anomalies. The height and depth contours in this chart are average height contours from the average height map. Whtil the astrolabe work has been rigorously computed, and corrections for fopography and compensation have been applied to the deflections, it would he premature to form any definite conclusions. The deflections are in all cases towards the nearer visible masses. A spur of high density evidently runs south of Karãchi under the shallow sea, Manora Point and the Oyster Rocks being projections from this spur. In the case of the Dālbandin and Yakmach deflections which appear inconsistent, the nearer masses have been concealed in the process of averaging out the height. Negative Hayford gravity anomalies were expected near Chandragup; these agree with the negative anomalies obtained in other oil-bearing regions.

There are no excertional anomalies in the Hämūn-i-Masshkel area. This is probably an area of subsidence which is not overlaid by a great depth of alluvium.
TABLE 1.-Observations at Cambridge.

TABLE 2.-Difference between individual and mean pendulums, season 1927-28. (The unit is 10^{-7} sec.).

Name of station		A	v	B	v	C	-
Dehra Dūn	\cdots	$+6$	$+2$	- 5	- 5	- 2	$+1$
Chandragup	\ldots	+ 8	+ 4	+ 3	+3	-11	-8
Rela	...	+ 4	0	0	0	- 3	0
Gadāoi	\ldots	$+8$	$+4$	-16	-16	+ 9	+12
Karāchi	\ldots	$+5$	$+1$	- 3	-3	- 2	$+1$
Sāhiji	...	- 4	- 8	$+10$	+10	- 6	- 3
Vikia	\ldots	-15	-19	+29	+29	-13	-10
Kakeja	...	+ 4	0	- 4	- 4	-1	$+2$
Hyderābäd (Sind)	\ldots	+ 8	+ 4	+ 4	$+4$	-12	- 9
Dālbandin	\ldots	$+1$	- 3	+1	$+1$	- 3	0
Gulugah	...	+ 3	-1	-1	-1	- 3	0
Hämūn	\cdots	+ 5	$+1$	- 6	- 6	+ 1	+ 4
Rabro	\ldots	-4	-8	+17	+17	-13	-10
Wadi-i-Sultān	...	+5	+ 1	- 3	- 3	- 1	$+2$
Nokkondi	...	+11	$+7$	- 2	- 2	-8	- 5
Warechah	\cdots	$+4$	0	-10	-10	$+6$	+ 9
Yakmach		+ 3	- 1	- 5	- 5	+ 3	+ 6
Nushti	...	+ 12	$+8$	-4	- 4	- 7	- 4
Dehra Dūn	\ldots	$+5$	$+1$	- 6	- 6	+ 2	+ 5
Mcans	\ldots	$+4$		0		-3	

TABLE 3.-Times of vibration at Dehra Dūn.

TȦBLE 4.-Mean times of vibration and deduced values of g, season 1927-28.

(Continued)

Chap. iv.] GRAVITY \& DEVIATION OF THE VERTICAL 61
TABLE 4.-Mean times of vibration and deduced values of g, season 1927-28-(contd.).

Name of station	A	B	C	Mean
Nakkondi s	$0 \cdot 5079616$	0.5079629	0.5079635	$0 \cdot 5079627$
$s \cdot s_{0}$	+093	+ 096	$+107$	+099
	$979 \cdot 027$	$979 \cdot 026$	$979 \cdot 022$	979.025
Warechal s	$0 \cdot 5079592$	$0 \cdot 5079606$	$0 \cdot 5079590$	0.5079596
$\varepsilon-s_{0}$	+069	+073	+062	+068
g	$979 \cdot 096$	$979 \cdot 035$	979-039	979.037
Yakmach . s	0-5079681	$0 \cdot 5079689$	0-5079681	0.5079684
$s-s_{0}$	+158	+156	+153	$+156$
g	$979 \cdot 002$	979.003	979-004	$979 \cdot 003$
Nushki s	0.5079744	0.5079760	$0 \cdot 5079763$	0.5079756
$s-{ }^{\text {- }}$	+221	$+227$	+235	+228
g	978.978	$978 \cdot 975$	978.972	978.975

TABLE 5.—Modern gravity observations in India.

No.		Station	Date	Heiglht	Latitude N.	Longitude E.	g	$g-\gamma_{\text {A }}$	$g-\gamma_{C}$
				feet	- 1 "		$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
1	53J	Dehra Dūn	1204	2239	301929	780322	979-063	-0.074	+0.006
2	66C	Madras	5304	20	130408	801454	978-279	-0.013	-0.053
3	47 B	Colāba	$20 \quad 304$	34	185345	724847	$978 \cdot 631$	+0.063	$+0.063$
4	53J	Mussoorie (Dnnseverick)	$24 \quad 404$	7129	302728	780333	978-776	+ $0 \cdot 087$	
5		, (Camel's Back)	$17 \quad 504$	6924	302735	780432	978-793	+0.085	+0.053
6	73 H	Cuttack	141204	92	202905	855201	$978 \cdot 659$	+0.006	$+0.006$
7	78 D	Cbñtra	1105	64	241240	882327	978.878	-0.014	$+0.005$
8	78C	Kisnapar	19105	113	250226	882829	978.956	+0.012	$+0.039$
9	78 B	Jalpaigari	1205	268	263116	884.413	978-922	-0.113	-0.020
10		Kesarbä	$16 \quad 205$	204	260741	883126	$978 \cdot 952$	-0.060	$+0.003$
11	78 C	Rāmchāndpur	$26 \quad 205$	132	254057	883258	978.968	-0.019	+0.021
12	78B	Siligari	14.305	387	264147	882450	978-887	-0.149	-0.039
13	78 A	Darjeeling	21305	6966	270247	881608	978-501	+0.055	32
14	78 B	Knrseong	29305	4913	265251	881645	978.626	0.000	$+0.010$
15	78A	Sandakphū	$12 \quad 405$	11766	270606	880015	978-190	$+0 \cdot 189$	$+0.048$
16	53E	Simla	16120	7043	310619	770950	978-840	$+0.091$	$+0.036$
17	53B	Kälka	231205	2202	305008	765622	979-147	-0.034	+0.018
18	44 N	Ludhiāna	2106	835	305525	755109	979-274	-0.042	$+0.002$
19	441	Mién	11106	708	313137	742232	979-383	+0.007	$+0.040$
20	44, J	Ferozepore	$19 \quad 106$	647	305548	74.3704	979-341	$+0.007$	$+0.038$
21	43 P	Pathēnkot	3206	1088	321633	753903	979-237	-0.165	-0.076
22	44 F	Montgomery	$18 \quad 206$	557	303947	730618	979-321	0.000	+0.019
23	39J	Dera Ghäzi Khān	1306	397	300349	704538	979-192	-0.097	-0.064
24	39 N	Moltán	9306	404	301111	712551	$979 \cdot 243$	-0.055	-0.031
25	39D	Jacobābād	17306	183	281634	682705	979-186	$+0.014$	$+0.038$
26	340	Sibi	$23 \quad 306$	434	293246	675231	979-119	-0.127	-0.059
27	"	Mach	$30 \quad 306$	3522	295225	671820	978-960	-0.021	-0.003
28	34 N	Quetta	4406	5520	301215	670041	978-851	+0.031	$+0.007$
29	53 K	Hardwar	81206	949	295629	780919	$979 \cdot 122$	-0.106	-0.017
30	5.3 G	Roorkee	181206	867	295220	775359	$979 \cdot 129$	-0.101	
31	"	Nojl	271206	879	295328	774025	979-143	-0.088	0.029
32	"	Kaliana	6107	810	293055	773906	979-154	-0.054	007
33	,	Meerat	18 207	734	290026	774140	979-151	-0.024	
3 F	53H	Gesupar	$5 \quad 307$	691	283302	774203	979-125	-0.020	+0.005
35	53F	Mohan	$17 \quad 307$	1660	301063	775437	979-109	-0.070	$+0.003$
36	"	Asaroti	26307	2467	301425	775803	979-059	-0.050	+0.00

TABLE 5.-Modern gravity observations in India-(contd.).

		Station	Date	Height	Latitude N .	$\begin{gathered} \text { Longitude } \\ \mathbf{E} . \end{gathered}$	g	$g-\gamma_{\text {A }}$	$g-\gamma_{C}$
				$f \in e t$	\prime	- " "	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
37	53 F	Fatehpur	5407	1434	302553	774337	979-147	-0.074	+0.019
38		Kälsi	10407	1684	303108	775026	$979 \cdot 131$	-0.073	+0.033
39	53 J	Rājpur	19407	3321	30242	780547	979.002	-0.040	+0.026
40	57G	Bangalo	2208	3118	130041	773501	978.025	$+0.025$	-0.025
41	57 D	Mysore	7208	2501	121852	764020	978.045	+0.014	-0.023
42	57 L	$\begin{array}{r} \text { Edgar Shaft } \cdots \\ \text { (Surface) } \end{array}$	21208	2945	125547	781541	978.076	+0.064	$+0.009$
43	58 I	Salem	1308	948	114005	780910	978-116	-0.036	-0.048
44		Yercand	6308	4493	114656	781229	977.908	$+0.083$	-0.033
45	-8A	Ootacamund	15308	7395	112437	764203	977.735	+0.195	+0.012
46	58F	Kodaikānal	22308	7665	101350	772756	977-643	+0.167	-0.032
47	46M	Uijain	311208	1612	231100	754700	978.677	-0.002	-0.011
48	46 N	Mhow	8109	1903	223310	754540	$978 \cdot 620$	$+0.009$	-0.015
49		Mukhtiña	$\begin{array}{ll}15 & 109\end{array}$	926	222340	755840	978.664	-0.028	-0.019
50	55 B	Mortakka	22109	576	221320	760250	978.703	-0.011	$+0.005$
51	55C	Khandwa	$20 \quad 108$	1014	214930	762130	$978 \cdot 692$	+0.044	+ 0.047
52		Asirgarh	$8 \quad 209$	2077	212810	761750	978.584	+0.057	$+0.030$
53	460	Jablgano	18209	760	210000	753350	978.633	+0.011	$+0.020$
54	55 H	Amraotī	2309	1123	205550	774540	978.609	+0.0.25	+0.026
55	559	Ellichpur	13309	1314	211820	773040	978.618	+0.030	+0.031
56	55 F	Hoshangibād	26309	1002	224500	1774350	978-719	$+0.011$	+0.021
57	,	Shäbpur	4409	1286	221130	775410	978.663	+0.017	+0.023
58	550	Badnior	11409	2103	215410	775410	978-607\|	+0.056	+0.038
59	55 I	Saugor	261109	1757	235147	7848	$978 \cdot 731$	+0.021	+0.011
60	5514	Damoh	51209	1213	234954	7926	$978 \cdot 758$	-0.001	$+0 \cdot 004$
61	Cht	Katni	121209	1254	235025	8026	$978 \cdot 757$	$+0 \cdot 001$	$+0 \cdot 007$
62		Umariá	201209	1499	233137	8054	978.740	$+0.027$	+0.029
63	845	Pendia	301209	1996	224641	8200	975.638	$+0 \cdot 021$	$+0.008$
64	8 LJ	Hilñspur	$10 \quad 110$	878	220353	5212	978.631	$+0.005$	$+0.013$
65	647	Raipur ..	20110	096	211356	814.1	$978 \cdot 612$	-0.002	-0.003
66	64.	Amgacin	31110	1032	212131	8028	$978 \cdot 614$	-0.004	-0.003
67	5 s 5	Sconi	$13 \quad 210$	2032	220529	7729	978.622	+0.052	+0.036
68	55M	Inhbulpore	$25 \quad 210$	1467	230854	7959	$978 \cdot 719$	+0.028	+0.030
69	63D	Maihar	$15 \quad 310$	1161	241538	8048	978.784	-0.009	-0.003
70	639	Allabäbaid		288	25 2555	8155	978.943	-0.012	+0.009
71	63,5	Sultánpur	7 7 4 4 1 10	314	$\because 61606$	820436	978.959	-0.053	-0.027
72	94D	Rangoon	181110	164	164755	960908	$978 \cdot 467$	+0.021	+0.016

(Continued)

TABLE 5.-Modern gravity observations in India-(contd.).

	Station		Date	Helght	Latitude N.	$\left\lvert\, \begin{gathered} \text { Lougitude } \\ \text { E. } \end{gathered}\right.$	g	$g-\gamma_{\mathbf{A}}$	$g-\gamma_{C}$
				feet			$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
$73 \mathrm{s5N}$	Prome	... 2	281110	101	184940	951340	978-543	-0.016	-0.004
74850	He zada		101210	46	173917	952718	978-481	-0.020	-0.018
76.85 L	Bassein		171210	23	164711	944406	978-475	+0.017	$+0.006$
76.94 B	Tonngoo	\cdots	$2 \begin{array}{llll}2 & 1 & 11\end{array}$	159	185550	962703	978.558	. 000	+ 0.086
77 94A	Pyinmana		14.111	409	194425	961156	978-577	-0.004	+0.026
78.84 P	Meiktila		$\begin{array}{lllll}23 & 1 & 11\end{array}$	799	205126	955158	$978 \cdot 617$	+0.008	+0.023
79 93C	Mandalay		2211	244	215944	960628	978-714	-0.017	+0.028
80 93B	Maymso		11211	3495	220113	1962824	978.490	$+0.061$	+0.018
	Mogok		2311	3685	225451	1962951	978-539	+0.071	+0.031
83 840	Mying		19 311	248	212856	95 2350	978.690	-0.009	$+0.016$
83 63P	Japis		221111	474	243158	84,00	978.856	-0.020	+ 0.002
8472 L	Daltonganj	...	61211	707	240205	8404	978.827	$+0.007$	$+0.020$
8573 E	Rinch		301211	2167	232305	8 Br 19	978.691	$+0.051$	$+0.030$
86	Gayit	... 1	$\left\lvert\, \begin{array}{lll}12 & 112\end{array}\right.$	361	244742	8500	978-884	$-0 \cdot 020$	$+0.008$
8i 72K	Dlongh		$1 \begin{array}{ll}19 & 112\end{array}$	154	252253	8628	978-909	-0.056	-0.025
$88: 720$	Ar		$30 \quad 112$	188	2534,10	9439	978.918	-0.056	28
89 63P	Sasariom		9218	340	245721	8359	978.903	-0.014	+0.00?
(9) 0630	Mnghal Sar		$18 \quad 212$	257	251703	8306	978.919	-0.029	-0.00i
91	R		$27 \quad 212$	207	253442	8359	978-933	-0.040	-0.014
0.68	Mnzafforpar		8 312	179	260705	85.5	978.934	-0.080	-0.042
4 4 : 63 N	Majhauli Rãj		$15 \quad 312$	219	261746	8358	978.928	-0.094	057
91	Gorakhper		$25 \quad 312$	257	264458	8323	978.936	$-0 \cdot 116$	-0.076
65 . it 4	Lalitprar		41212	1199	244129	782426	978-814	-0.005	-0.002
(i4)	Bina		111212	1350	241041	781146	978-795	+0.026	
978	Bhopal		181212	1630	2315 58	772500	978.711	+0.029	$+0.022$
94 $\mathrm{O}+\mathrm{H}$	Croona		271212	1569	243848	771913	978.807	+0.026	$+0.019$
(1)	Kaiinpor		7113	1763	240711	773917	978-777	$+0.050$	
(\%) $5+5$	Jhan		$19 \quad 113$	858	252702	783343	978-910	$+0.007$	$+0.014$
11101 -r.t	Gwalior		$\begin{array}{lll}28 & 113\end{array}$	658	\|26 13 57	781249	978-958	-0.019	-0.007
103:364	Sipri		9213	1533	252552	773925	978.876	$+0.038$	$+0.029$
113	Dinturier		19213	577	264201	775447	978-999	-0.019	-0.005
106 -t 1	Agra	... 2	26213	535	271020	$78010{ }^{7}$	979.056	-0.001	$+0.017$
165: ${ }^{\text {ct }}$	Mattra	\ldots	6313	562	272825	774148	979-072	-0.004	+0.01i
10n $\therefore 1+1$	Hithras		13813	587	273652	780322	979.075	-0.009	+0.011
15	Aligarb		21 313	612	27 3 3 32	780031	979 -075	- $0 \cdot 028$	-0.008
14.8311	Kharja		29318	649	281419	775153	978-082	-0.04?	-0.019

(Con/inued)

TABLE 5.—Modern gravity observations in India-(contd.).

	$\left\|\begin{array}{cc} \stackrel{\rightharpoonup}{0} & \dot{0} \\ 0 & 0 \\ 0 & 0 \end{array}\right\|$	Station		Date	Height	Latitude N.	Longitude E.	g	$g-\gamma_{\mathbf{A}}$	$g-\gamma_{0}$
					feet	- 1 "	"	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
109	47B	Alibāg		271213	12	183830	725210	978-551	-0.005	
0	46C	Surat		12114	30	211005	724805	978.727	+0.027	+0.032
111	46F	Baroda		28114	109	221835	731105	978.749	-0.015	-0.008
112	46 A	Ahmad		42214	156	230120	723365	978.836	$+0.031$	$+0.036$
113	46 D	Damín		5214	15	202445	72 5005	978.700	$+0.043$	+0.049
114	45 D	Deesa		$10 \quad 214$	465	241520	721130	978-900	$+0.043$	+0.047
115		Abu		19 \& 14	3836	2 ± 3540	724300	978-679	+0.114	
116	460	Broach		$21 \quad 214$	51	214205	725900	$978 \cdot 740$	+0.009	+0.010
117	45 G	Erinpura		$26 \quad 214$	872	250855	730335	978.896	$+0.016$	$+0.023$
118		Pāli Mār		$\begin{array}{llll}5 & 3 & 14\end{array}$	719	254730	731925	978-950	$+0.010$	+0.020
119	54 N	Etāwah		261123	492	264700	790055	978.998	-0.035	-0.013
$1: 30$	54M	Fatehgar		61223	493	272206	793800	979.023	-0.052	-0.029
121	53 P	Pī		161223	610	283905	794931	979-045	-0.114	-0.055
122	54, M	Shühjabãnpu		261223	510	275421	795552	979.040	-0.073	-0.039
123	63 A	Sitāpur		12124	449	273313	804108	979-003	-0.090	. 054
124	62 D	Sonāripur		22124	514	282739	804424	979-013	-0.142	-0.067
125	63 E	Bahraich		2224	403	273402	813541	978-977	-0.121	-0.062
126	"	Gondā		7224	352	270821	815625	978.949	-0.123	-0.085
12	63I	Gainsari		11224.	364	273143	823545	- 943	-0.156	-0.091
128	72A	Bagaha GLāt		$19 \quad 224$	298	270806	840305	978-923	-0.153	088
129	72 B	Motīhāri		$26 \quad 224$	220	263910	84, 5435	978-893	-0.153	99
13	43 L	Wazilūb		$27 \quad 225$	756	322648	740628	979-394	-0.052	00
131	4:3H	Jhelum		$3 \quad 325$	764	325520	734241	979-3!6	-0.088	$-0 \cdot 022$
132	43G	Rāwalpindi		$10 \begin{array}{ll}10 & 35\end{array}$	1754	333641	730107	$979 \cdot 346$	-0.103	-0.047
		Murree		$15 \quad 325$	6885	$335+07$	732315	979.024.	+0.032	-0.025
134	43 F	Domel		22395	2239	342103	732807	97! 9298	$-0 \cdot 167$	$-0 \cdot 048$
135	43 J	Shädipu		14425	5193	341114	74410	979.058	$-0 \cdot 116$	-0.0830
	"	Gandarb		1525	5200	34, 1248	74.4609	979.032	-0.094,	$+0.010$
138		Hasan		12 525	6084	341354	745829	978-930	$-0 \cdot 105$	+0.017
138	43 N	Sonāmarg		22 ¢ 25	9050	34.1802	751619	975.810	-0.013	$+0.043$
1	+3,	Churawan		14 6 $2 \dot{1}$	8151	31.3932	1745401	978.851	-0.056	0.032
140	43 N	Minmarg		$20 \quad 625$	9351	344.730	750449	978.803	-0.033	+0.035
141	,,	Deosai I		$29 \quad 625$	13311	3 ± 6721	751441	978.625	+0.146	$+0.090$
142	4331	Deosai II		4725	12805	350204	752347	973.627	+0.094	+0.062
1	43 N	Deosai III		9725	12391	345547	752538	978.674	$+0 \cdot 111$	$+0.095$
1	43.J	Lãlpur	...	$28 \quad 725$	5633	340537	743212	979-080	$-0 \cdot 045$	+0.017

TABLE 5.-Modern gravity observations in India-(concld.).

		Station	Date	Height	$\begin{gathered} \text { Latitude } \\ \text { N. } \end{gathered}$	Longitude E.	g	$g-\gamma_{\text {A }}$	${ }^{g-\gamma_{C}}$
				feet			$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
	43 J	Srinagar	4) 825	5198	3404 36	744927	$979 \cdot 095$	-0.070	+0.021
	43 K	l'ingalan	17825	5227	33 ธ4. 23	745559	979.075	-0 073	+(1.012
		Yūs Maidinn	22825	7867	334957	743957	973-918	+0.024	$+0.008$
148	4:3 K	Korag	278 2ō	10952	334832	743319	978-752	+0.149	3
149		Tosh Maidãn	31825	1031 ó	335518	$7+2958$	978-808	+0.135	+0.050
150	35 P	Karñchi	$2+1127$	29	245017	670247	978.961	$+0.023$	+ 0.019
151	35 C	Chan	13122	43	252638	655034	978-954	-0.025	-0.023
152	35 K	Relu	351227	35	253958	$6622 \quad 24$	978-965	-0.031	-0.019
		Gadãni	311227	67	250636	664342	978-967	$+0.010$	$+0.007$
154	35 P	Sāhiji	$\begin{array}{lll}15 & 128\end{array}$	211	345118	673606	978-952	+0.031	$+0.025$
	40D	Vikia	23128	47	244151	680339	978-939	+0.012	+0.010
		Kakej	$30 \quad 128$	33	244255	683426	978-944	$+0.014$	4
157	40 C	Hyderābäd (Sind)	9228	41	$\because 52259$	682117	978.979	$+0.004$	$+0.008$
158	34D	Dālbandin	$24 \quad 228$	2786	285331	642454	978-980	$+0.005$	+ 0.009
	31M	Galugah	6328	1634	275629	63 U2 55	978.978	-0.033	-0.008
160	30 P	Hámin	$9 \quad 328$	1600	280115	630425	478-990	-0.028	-0.008
161		Rabro	$12 \quad 328$	1600	280718	6314	$979 \cdot 000$	-0.027	-0.007
162	30L	Wadi-i-Sultān	$16 \quad 328$	1600	$\because 82114$	625952	779-029	-0.016	$+0.006$
163		Nokkondi	$\left\lvert\, \begin{array}{ll}21 & 328\end{array}\right.$	2281	284934	62444.2	979.025\|	+0.009	$+0.019$
	30 H	Warechah	$24 \quad 328$	2468	285157	615426	979-037	$+0.034$	+0.048
	30P	Yakmach	29 3 28	2403	264439	635052	979.003	$+0.004$	$+0.014$
	$3+\mathrm{K}$	Nushki	1428	3339	293227	660243	$978 \cdot 975$	+0.002	$+0.016$

TABLE 6.-Observations in or near India made by non-departmental observers.

$\left.\begin{array}{\|cc\|} \hline \stackrel{\rightharpoonup}{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\rvert\,$	Station	Date \& observer	Height	$\begin{array}{\|c\|} \hline \text { Latitude } \\ \mathrm{N} . \end{array}$	$\left\lvert\, \begin{gathered} \text { Lougitude } \\ \text { E. } \end{gathered}\right.$	g	$g-\gamma_{\text {A }}$	${ }^{g-\gamma_{C}}$
	The de Filippi Kara-koram Expedition 1914							
			feet	-		cmisec ${ }^{2}$	$\mathrm{cm}^{2} / \mathrm{sec}^{2}$	$\mathrm{cm} / \mathrm{sec}^{2}$
53 J	Dehra Dūn	Alcssio 1914	2229	3019.5	$7803 \cdot 2$	979.079	-0.059	
43J	Srīnagar ...	" "	5217	$34.04 \cdot 3$	$74 \quad 49 \cdot 8$	$979 \cdot 090$	-0.073	
52 F	Leb $\quad .$.	,	11546	$3410 \cdot 1$	77 35-1	978-529	$-0.0 \overline{0} 0$	
52 B	Lamayaru ...	" "	11319	$34 \begin{array}{ll} & 17\end{array} \cdot 0$	$76 \quad 46 \cdot 4$	$978 \cdot 575$	-0.035	
43N	Drās ...	"	10108	34. $25 \cdot 8$	$75 \quad 45 \cdot 4$	$978 \cdot 778$	+0.043	
52 B	Kargil ...	"	8901	$3433 \cdot 7$	$7607 \cdot 5$	$978 \cdot 845$	-0.014	
52 A	Tolti	"	7904	$3502 \cdot 0$	$7606 \cdot 3$	978.853	-0.140	
43M	Wozul Hadur	" "	13921	$35 \quad 11 \cdot 9$	$75 \quad 32 \cdot 3$	978.536	$+0.093$	+0.036
52 E	Depsang ...	", ",	17582	$3517 \cdot 4$	77 58.4	$978 \cdot 165$	$+0.056$	
43M	Skirda ...		7326	$3517 \cdot 8$	$7538 \cdot 5$	978.924	-0.145	+0.014
511.	Suget Karaul	G. Abetti 1914	12002	$\begin{array}{lll}36 & 20.9\end{array}$	$7801 \cdot 6$	$978 \cdot 741$	+0.019	
51 F	Yirkand ...	"	3937	3824.4	$7715 \cdot 8$	979-530	-0.126	
42 M	Kashgar ...		1312	39 28.3	$75 \quad 59 \cdot 1$	979.537	-0.178	
...	Tashkent ...	", "	479	4119.5	$6917 \cdot 7$	980.078	-0.059	
Dr. Vening Meinesz's Submarine Expedition*								
	Colombo			\bigcirc -	- ,			
\cdots		191123		757	$61 \quad 54$	$978 \cdot 136$	$+0.002$	$+0.015$
\ldots		201123		753	6558	978.111	$-0 \cdot 021$	-0.011
...		211123		756	6846	978-102	-0 032	-0.014
49D		221123		806	7248	$978 \cdot 113$	-0.024	
59 E		241123		720	7728	$978 \cdot 099$	-0.020	
59 N		281123		$656 \cdot 5$	7951	978.118	$+0.012$	
680		51223		$55 \cdot 5$	8012	$978 \cdot 108$	$+0.080$	
"		51223		532	$8012 \cdot 5$	978.014	-0.069	
\cdots		81223		544	8707	978.065	$-0 \cdot 020$	-0.013
88 B	Subung	101223		602	9250	978.024	-0.068	
${ }^{880}$		121223		$555 \cdot 5$	9519	$978 \cdot 181$	$+0.097$	
97 B		181223		6 Ol	9655			
97 B		181223		611	9659			
97 L		191223		426	9853			

[^7]
Chapter V

TRIANGULATION

by Captain G; H. Osmaston, m.c., r.e.

1. General.-No principal triangulation was undertaken, but No. 15 Party was engaged throughout the season, at the special request of the Director, Frontier Circle, on secondary work in the North-West Frontier Province, where a reliable framework was required to co ordinate the elaborate network of minor triangulation executed during the last half century.

This work consisted of two extensions connecting the main primary series to recent minor triangulation on the frontier, and the commencement of a secondary series through Waziristãn.

The headquarters moved at the beginning of November 1927 from Murree to Peshāwar, remaining there till work was completed in the middle of April 1928, when the party returned to Dehra Dūn.
2. Personnel.-The party took the field under Captain G. H. Osmaston, r.e., with two computers and 35 khalāsis; the latter were recruited about equally from Punich State and Kohät District with the exception of a few old hands who were taken from the United Provinces as skilled helio men.
3. Triangulation--Kurram Series.--Taking the different series in the order in which they were completed, the first series (Kurram) breaks off from the stations of the North Baluchistãn series, a few miles N.W. of Bannu, and extends northwards astride the Kurram river for 70 miles as far as Pārachinār and thence by a minor figure to the Safed Koh Watershed.

The stations were built on bare hill tops ranging in height from 8,000 feet in the north to 2,500 feet in the south.

The preliminary reconnaissance was complicated by the fact that the series was flanked by the politically inaccessible Tîrah on the east and the Afghan frontier on the west. The problem of avoiding small figures up the Kurram valley proper was finally solved by means of a long ray passing over the former country. All the observations were taken by daylight to signals consisting of helios whenever possible, otherwise to Lucas daylight signalling lamps or \mathbf{X} signals of black and white cloth. The lamps were used with success up to a range of 24 miles and the cloth signals up to 35 miles with the sky as a background. The sky was generally overcast but visibility on the whole was good.

Reference numbers and Values of " m " and " M " for all Geodetic Series of the Indian I'riangulation: (See Records of the Survey of India Vol. IX, p. 137).
For 42 Series entering the Simultaneous (irinding (shown in italics below) Mean Square $\mathrm{M}= \pm 104$ For Series up to No. 99

Mean Square $\mathrm{M}= \pm 1 \cdot \dot{\circ} \mathrm{i}$

Unfriendly tribesmen were effectively countered by militia escorts, which accompanied the observer as well as the signallers at every station.

Several of the new stations were apparently close to the sites of old minor stations, but the old mark was found only in one case. The new stations have auxiliary marks cut on rocks near by and are therefore much less likely to be lost.

Peshäwar Series.—The second series (Peshāivar) extends westwards from the Great Indus series about Campbellpore as far as Peshāwar, where it connects directly with recent minor triangulation in the Khyber area.

The country consists of the broad Kābul river valley bounded on the north by the main Himalayan ranges and on the south by the Cherat hills. Persistent dust haze in the valley held up both reconnaissance and observations for a time; but owing to the excellent road communications it was possible to seize the occasional opportunities to observe, when visibility was at its best. Connection was made at 'Takht-i-Bhai and Karamār (Kaloo Khan) with the work of 'A' Company's triangulators, who were commencing a new series northwards towards Chitrāl.

Jalala Sar was the only station at which the mark-stone of the previous minor triangulation was not found, but from the appearance of the site, it is probable that the new mark differs in position by less than one foot from the old.

Escorts were provided at Jalāla Sar and Michni.
All the observations were made by day to 5 -inch helios.
N. Waziristān Series.-The third series (Wazīristān) was commenced in March, breaking off from the same two primary stations as the Kurram series but progressing southwards.

The intention was to run this new series roughly parallel to the frontier from the Tochi valley in the north through Razmak and Wana to the North Baluchistan series in the vicinity of Fort Sandeman.
'I'hree figures were completed by the middle of April, the terminal stations being a few miles on either side of the Razmak platean. Unfavourable weather then cut short further work and the party returned to recess headquarters.

As far as Razmak the hills are bare and easy to climb, but a certain amount of clearing on the hill tops will be necessary in the next section southwards.

The uncertain behaviour of the local tribesmen is the only serious difficulty. This season Khäsadār escorts were taken to all stations and no trouble was encountered.

The marks of the stations of the old minor triangulation were picked ip at Shuidār and Shakāwat.

Observations were taken only in the day time, to helios when possible, otherwise to opaque signals.

It is considered that the results would have keen considerably improved if night work had keen possible. During the season work was done as a rule between 11 a.m. \& 4. p.m. and sometimes considerable shimmering of the helios was unavoidable.

Wild Theodolite.-The small Wild Universal Theodolite with a 3 3 inch horizontal circle was used throughout the season; and as this is the first time that this type of instrument has been used in the Survey of India on any but minor work a detailed account of the results obtained is given in the Appendix to this Chapter.

The strength of the detachment i.e. 35 khalāsis, was almost exactly half the number taken to Burma in the preceding season, when a 12-inch theodolite was used, and other things being equal, a saving of from 15 to 20 men is effected by using the Wild theodolite, a saving which covers the cost of one of these instruments in a single season.
4. Computations.-Adjustment has been carried out by dispersing the errors in individual triangles and taking the means of common sides (i.e. braced quadrilaterals have not been adjusted as such). The data for the triangulation pamphlets have been abstracted in a form suitable for publication.

The values of m and M , triangular error and order of merit etc., have been calculated for the three series and these as well as other details of the triangulation are given in the table which follows :-

TABLE 1.-Particulars of triangulation.

Name of Series	Kurram Series	Peshāwar Series	N. Waziristān Series
Number of new stations brilt	6	3	3
Namber of statiuns observed at	7	7	8
No. of triangles observed \ldots	7	11	10
Length of Δ^{n} in miles ...	70	60	41
Araa of Δ^{n} in square miles ...	864	1908	427
Mean length of sides in miles	$21 \cdot 8$	31.2	$13 \cdot 7$
Average triangnlar error in seconds	$2 \cdot 67$	$1 \cdot 58$	2.72
Value of m (mean sqnare erior of an atigle) ...	$2 \cdot 012$	$1 \cdot 181$	$1 \cdot 905$
Valne of M (critection of strength of the series)	$2 \cdot 13$	$1 \cdot 00$	$2 \cdot 54$
Order of merit ...	$83(1)$	43 (A$)$	86 (A)
Instrmments used -..	33-inch Wild	3 ${ }^{\text {a }}$-inch Wild	3 3 -inch Wild
	Theodolite No. 1702	Theodolite No. 1702	Theodolite No. 1702

APPENDIX

Field performance of the 3 -inch Wild Theodolite.
During the coll weather, from October 1927 to April 1928, the small type Wild theodolite was employed on three short extensions on the North-West Frontier of India. 'The desired accuracy was of secondary order, i.e. the average triangular error was to be within the limit of three seconds of arc.

Wild universal $3 \frac{3}{4}$ " Theodolite, as used for

The instrument used was No. 1702 fitted with telescopic centering, a diagonal eye-piece, and special electric bulbs, holders etc. for night work. This instrument had already seen a year's service in India, and had been well reported on.

Sights for the telescope had been suggested as a necessary addition, and these were fitted before work commenced: no difficulty was then found in picking up small distant objects.

The country was hilly, with communications by motor road and mountain tracks. The theodolite and stand could easily be carried by two men up any mountain, though often during this season one man carried the whole outfit alone.

A leather man-pack equipment, on the principle of a 'rucksack' was constructed which proved very satisfactory and enabled the instrument and stand to be carried comfortably on horseback. It was found that the clamps at the base of the theodolite, inside the dome shaped case, worked loose, and a thin plush cap was therefore provided, which slipped over the theodolite, inside the metal cover, and held every thing firm.

Although this theodolite embodies many entirely new features, the essential qualities to be examined in order to make a trustworthy comparison with other similar instruments, are two only; viz:-those of "portability" and "rapidity of operation", taken in conjunction with some given standard of accuracy.

Accuracy-As the manufacture of instruments has improved, theodolites for work of geodetic accuracy have gradually decreased in size: the ald 36 -inch theodolite with hand-divided circle has given way to the 24 -inch and the latter in its turn has been replaced by smaller models down to the 12 -inch theodolite of the beginning of this century, which has held the field for all the most precise work for the last twenty years. The results obtained with these smaller instruments are of the same order of accuracy as with the larger, or perhaps slightly better, and greater accuracy is hardly called for. The results obtained with the $3 \frac{9}{4}$-inch Wild are not as good as those taken with a modern 12 -inch theodolite, and therefore it cannot replace this instrument for geodetic triangulation. The accuracy was found to be about equal to that of an 8 -inch theodolite, with which the best secondary triangulation has generally been associated.

Portability.-Comparing the portability of the Wild with that of an 8 -inch theodolite of accepted design it has already been stated that two men are amply sufficient to carry the Wild theodolite and stand under all conditions, also no observatory tent is required; whereas it takes at least 6 men to carry an 8 -inch theodolite with its stand in difficult country, and four more are necessary to carry the observatory tent, so that the proportion is 5 to 1 in favour of the Wild, indicating an outstanding advance in design.

Ropidity of operation.-Again comparing the rapidity of operation of the Wild with that of an 8 -inch two mieroscope theodolite, the accuracy may be taken as equal, that is to say the same average triangular error is obtainable from either, if the same number of measures is
taken in each case. The question to be considered is how long the same number of observations takes with each instrument.

The setting up and adjusting of the 8 -inch, with its microscopes, takes the best part of two hours, perhaps three hours, including the time taken to level a platform and pitch the observatory tent: this time is wholly saved with the Wild, which has no field adjustments except levelling, and for which an observatory tent is unnecessary.

The intersection as well as the reading and booking of a pointing with the Wild take about the same time as the intersection of the object only, on the larger instrument; walking round and reading the two microscopes takes up at least as much time again. It is therefore fair to say that the observations of both vertical and horizontal angles taken with the Wild theodolite are twice as rapid as those taken with the old 8 -inch theodolite.

For secondary work, where an average triangular error of two or three seconds is not to be exceeded, observations, on one afternoon and during part of the following night, would be sufficient with the Wild; whereas the same work would undoubtedly take at least two days with the other instrument. Here again the superiority of the Wild is very marked, and it needs little imarination to see the economical advantages of this instrument over the old type.

If we make a comparison with the smaller and less precise theodolites at present in use, with 6,5 , or even 3 -inch circles, the Wild is more accurate, as well as lighter and quicker to operate than any of them; and there is little doubt that it thoroughly deserves its title of 'Ihe Universal 'Iheodolite'.

Observations.-It is not proposed to describe here the details of the Wild theodolite but merely to discuss points of interest which arose during the lield season and the resulting conclusions.

It was found that an observatory tent was unnecessary and definitely unsuitable lor use with the small Wild, which requires as much light as possible for the reading of its circles; the problems of dust and unequal expansion due to the direct rays of the sun are eliminated by the excellent protection afforded to the circles, which are completely enclosed. The instrument is unaffected by any but a strong wind, when some vibration occurs, but a screen to protect the observer's head would probably improve matters in this respect.

The non-collapsible stand was used throughout and was quite satisfactory; sometimes it appeared to twist during the first twenty minutes or so after being set up, but always settled down after this and remained guite steady in spite of wind and changes of temperature.

The cross-wires in the telescope are somewhat thick, especially for observations to opague signals, but in other respects nothing belter can be desired than the telescope which has plenty of magnification, and a bright clear field.

The diagonal eye-piece enables stars to be observed comfortably up to an elevation of 50^{\prime}, and the lighting arrangements for night work are adequate, when a battery of sufficient power is provided to maintain the lights for several hours on end.

Six zeros only were observed at each station, and the results show that an increase in accuracy will be obtained by taking more, also the results might have shown considerable improvement had night observations been possible in addition to day.

Regarding adjustments, it has been mentioned in a previous paragraph that the only field adjustment is for level: nevertheless the instrument must be thoroughly tested before use, and from time to time afterwards, to make sure that the factory adjustments have not altered.
'Three defects in the permanent adjustments came to light during the season.

Firstly, a difference of $\frac{3}{4}$ inch was found between the telescopic centering and that of a plumb-bob. Telescopic centering however has decided advantages over centering by the plumb-line; it is quite unaffected by wind, and it is easy to centre over a point some considerable distance below the instrument with the telescope, whereas for this purpose the plumb-bob is a clumsy substitute.

A more serious defect than the last was that, after the theodolite had been levelled, the transit axis was permanently tilted from the horizontal by an angle of about 2 minutes. The direct effect was that the 'face right' value of the horizontal angle between two objects differed from the 'face left' value, if the two objects were at different elevations, the mean of the two results giving the correct answer. The readings of vertical angles however were too great on both faces fortunately by quite a negligible quantity for small angles of elevation. It is doubtful whether a fault of this nature can be corrected by any one but the makers.

The third defect was found in reading vertical angles with this particular instrument. The mechanical connection between the vertical circle bubble and the vertical circle, instead of being perfectly rigid, had somehow become loose, allowing as much as twenty seconds play between the two.

The result was that a correct reading could only be obtained when the bubble was centered with a one-way motion of the screw controlling it. If the bubble overshot the mark, it was useless to bring it back by reversing the screw, as this made no change whatever in the position of the vertical circle, till the bubble had been moved back at least 20 seconds. Excellent results were obtained after this defect had been correctly located, hy using only a clockwise twist of the screw for centering the bubble on both fares. 'The bubble itself appeared to be very satisfactory, and sensitive to a single second in the reading of the circle.

It is hardly necessary to point out that although several more or less serious defects have been found and are recorded above, these only involve defects of adjustment and construction in the instrument which was being used, and in no way detract from a sincere admiration for the lesign and workmanship of this theodolite.

Mrthod of obscrvation.-Whe general procedure during, observation of horizontal angles was as follows:- a 'swingright' was immediately followed by a 'swing left'; the face was then changed and two swings again taken; this completed obeervations on one zero, unless any of the
measures, so obtained, were inconsistent, in which case the zero was repeated later.

Analysis of the results.-The season's results have been analysed and the main points of interest are shown in Table 2. The three series have been kept separate as they were observed under somewhat different conditions.

1. Kurram Series.—The weather was cloudy, consequently opaque signals were sometimes used; but on the whole conditions were favourable for good observations.
2. Peshāwar Series.-The number of observations taken at each station was increased, and fine weather enabled helios to be used throughout.
3. N. Waziristin Series. - In this work time was an important factor; for political reasons the stations could only be visited for short periods during the day-time, and in one or two cases auxiliary marks close to the stations had to be used instead of helios.

In the first and third series observations at each station were completed in a single afternoon, but, in the second observations frequently extended over two days. No night work was possible.

TABLE 2.-Analysis of the results.

Name of Series	Karram Series	Peabăwar Series	N. Waziristīn Series
1. No. of triangles ...	7	11	10
8. No. of angles ...	18	25	21
3. Mean length of sides in miles	$21 \cdot 8$	$34 \cdot 2$	$13 \cdot 7$
4. No. of zeros ...	6	6	6
5. No. of measares per zero ...	4	6	4
6. Greatest zero mean minus smallest zero mean in seconds	$6 \cdot 9$	$6 \cdot 5$	6.8
7. Consistently high zero ...	F. L. 60	F. S. 60 \& 0	F. L. 60
	F. R. 240	F. R. 240 \& 180	F. R. 240
8. Consistently low zero ...	Nil	F. L. $1 \% 0$	F. L. 150
9. Weight of an angle	Nil 0.69	F. R. 330	F. R. 330
10. A varage triangalar error ...	$2 \cdot 67$	1.58	2.72

In the sixth item of the table it is interesting to note that, although better observed, the second series shows but slight improvement on the other two, indicating that a difference of $6 \cdot 5$ seconds is a fairly true measure of the maximum error due to faulty graduation.

Regarding items 7 \& 8 of the table, the zeros used were:$\left\{\begin{array}{c}0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}, \text { F. L. } \\ 180,210,210,270,300,330, \\ \text { F. R. } .\end{array}\right\}$. Out of these, the third zero consistently gave high readings, and the last, low readings, though to a less degree, indicating an error in graduation at these two points. The amount seldom exceeded 2 or 3 seconds above or below the other zeros, which was of no consequence in this work.

Chapter VI

LEVELLING

by N. R. Mazumdar

1. Organization.-No. 17 party was under the charge of Captain G. Bomford, r.e, from 7th November 1927 to 26th February 1928 and of Mr. N. R. Mazumdar from the commencement of the season to 6th November 1927 and from 27th February 1928 to 30th September 1928.

Field work.-The field work was conducted by six detachments; three of them carried out the geodetic levelling of high precision, and three did the secondary levelling of the Lloyd barrage project of the Bombay irrigation department. The torsion balance detachment which was formed to assist the Burma oil company in their torsion balance survey of the oil fields of Upper Assam, was placed under the executive charge of this party.

Transfer of work.-Tertiary levelling of the Haveli irrigation project of the Punjab government was transferred to the Frontier Circle. The commercial levelling group, which had hitherto done levelling work for the local governments, under this party, was amalgamated with the main party.

Distribution of personnel.-The distribution of personnel for the field work is given in the table below:-

Detach. ment	Officer in charge	Locality	Class of levelling	Ont-turn
				miles
1	Mr. L. D. Joshi, S. A. S.	The Punjab	Secondary High Procision	$\begin{array}{r} 14 \\ 413 \end{array}$
2	Mr. P. B. Hoy, S. A.S.	The U. P. s Bengal	High Precision	445
3	Mr. Matlub Ahmad, S.A.S.	The U. P., the Panjab and Bombay	High Precision	368
4	Mr. J, N. Kohli, S. A. S.	Sind	$\left.\begin{array}{c} \text { High Precision } \\ \text { Secondary } \end{array}\right\}$	$\begin{aligned} & 205 \\ & 280 \end{aligned}$
5	Mr. Lalbir Singh, S. A. 8.	Sind	Secondary	401
6	Mr, B. P. Rundev, S. A. S.	Sind	Secondary	394

Mr. K. K. Das was in charge of the torsion balance detachment with Mr. H. C. Banerjea as his assistant.
2. Summary of out-turn.-Total out-turn was as follows:High Precision levelling in both directions ... 302 miles.

3. Work of detachments.- No. 1 detachment under Mr. L. D. Joshi did the following levelling:-
(a) Secondary branch leveling from Jabboanna (bench-mark No. 181/44A of the secondary line GarhmahärajaDāmāmiā) to Kot Māldeo. The Punjab irrigation authorities wanted to extend the area of operation of the Haveli project; the branch line was run to provide control for the tertiary levelling of the extended area. As the detachment was a single one, the levelling was done in both directions from Jabboana to Kot Mildeo and from Kot Mãldeo to Jabboāna.
(b) Jhang-Maghiāna-Wazīrābād-Ghakkar and Wazīābād-Jhang-Maghiāna: these are parts of new net line 136 . The route was mostly along railway and partly along canal embankment. In order to have the fore and back levelling done under different conditions, levelling was done in the following order; first from JhangMaghiàna via Phularwân, Waziríbād to Glakkar then from Phularwān to Jhang-Maghiāna and lastly from Wazīrabăd to Phularwăn. Ghakkar to Wazirābàd was done in 1926-27. 15 primary and 297 secondary bench-marks were connected during the work.
No. 2 detachment under Mr. P. B. Roy did the following levelling:-
(a) Hāthras-Muttra - Delhi-Meerut and Muttra-Hāthras; these are parts of net lines 140, 106 and 153. The route was along the railway between Hathras and Muttra and along the Grand Trunk Road for the rest of the way. 21 primary and $2, i 0$ secondary bench-marks were connected; of the latter, 9 were connected at Delhi at the special request. of the Chief Engineer, Delhi Province.
(b) Balasore-Basta-Midnapore-Howral and Basta-Balasore; these are parts of new net line 121. The route was partly along the Calculta-Cuttack trunk road, partly along canal embankment and partly along railroad. 12 primary and 184 secondary bench-marks were connected.
(c) Sahãranpur-Delura Dūn--Part of this Himālayan line from Dehra Dūn to Mussoorie was levelled in 1026-27.

Dehra Dūn to Sahāranpur was levelled by No. 3 detachment in October and November 1927 and Sahāranpur to Dehra Dūn was levelled by No. 2 detachment in A pril 1928.
No. 3 detachment under Mr. Matlub Ahmad did the following levelling:-
(a) Dehra Dūn-Sahāranpur.-This line was undertaken to complete the revision of the Himalayan line Sahäran-pur-Mussoorie.
(b) Sahäranpur-Ambāla-Ludhiāna.-These are parts of lines 139 and 137. The route was mostly along main roads and partly along railway. 16 primary and 144 secondary bench-marks were connected.
(c) Anjār-Mamuāra.-Levelling of this branch line which was undertaken at the suggestion of the Director Geological Surveys, was done in 1921-24. As the agreement between the fore and back levelling was not satisfactory, further relevelment was required as pointed out in the Geodetic report Vol. I for 1923-24. This was done during the season.
(d) Connection of the standard bench-mark at Bhūj-Construction of this bench-mark was not completed when the new net line No. 104, was run through Bhauj in 1923-24. It was connected this year with a number of bench-marks that were left in the vicinity during the last levelling for the purpose of effecting the connection.
(e) Nakhtarāna Motā to Tatta.-Levelling in one direction was done from Nalkhtarāna Motā to Lakhpat and from Unhia Tar to Tatta. The Indus river was crossed between Sujāwal and Tatta at Saidpur ferry ghāt. Crossing was made at three places by 3 different methods: the results are given in page 81 under "discussion of results". 17 primary and 87 secondary bench-marks were connected.
Between Lakhpat and Unhia Tar the line runs across the Rann of Cutch. As in 1926-27, no levelling could be done as the country was flooded. The officer in charge of the detachment, however, got some valuable information which would be useful for the future leveller. The following description of the country given by Mr. Matlub Ahmad, officer in charge of the detachment, will be interesting.
"The portion of the Khori creek to the west of Lakhpat is just like a sea, while to the east to a distance of 6 miles it is inundated by high-water; where the creek euds, the swamps start; our 5 feet peoss disappeared in the swamp. It was therefore impossible to cross this portion of the Rann. I crossed the creek in boats and landed at Cutch Kotri carthen platform and lighthouse. The old Kotri dharmsilla, where there was an embedded bench-mark, is now in ruins and is
surrounded by water on all sides; every effort was made to reach it; but no passage could be made through the water. Next morning we started further to the west; it was ordinary swamp up to 4 miles and Said Ali T.S. about 2 miles west was seen in the midst of wet salt beds or kars. These kars contain thick layers of salt and underneath is water and mud. They are so dangerous that animals sink down and can not be extricated: We found several animals thus entangled and abandoned. We could not get at Said Ali T.S. but it was looking like a mound at a distance. Not being able to commence levelling from even Said Ali T. S. we marched further west, crossing many kars with great difficulty, the feet of men bleeding from walking over salt beds. Guni T.S. lies in a large kar; the guide trying to reach the T.S. had not proceeded a furlong when he began to sink in the kar. On reaching the ruined site of d harmsiala at Vehr, the embedded bench-mark could not be traced as the dharmsila was totally washed away. Under the circumstances, the work was commenced from Unhia Tar leaving a gap of 36 miles between Lakhpat and Unhia Tar". The detachment officer further reported that in these 36 miles, there was not even a blade of grass nor suitable drinking water for man or beast. This year the state of the Kann is specially bad on account of the last Sind floods; otherwise, the Rann dries up with the exception of the kar's during February and March ; from early April to the end of January it is never dry. It will be necessary to build 3 embedded bench-marks at Vehr, Adhi and Cutch Kotri. Arrangement will have to be made for transport of water, fuel and fodder in addition to usual transport requirements.

The country is a difficult one for running a line of levelling as the kars offer formidable obstacles. Nevertheless efforts will be made to complete the line as soon as conditions appear favcurable.

No. 4 detachment under Mr. J. N. Kohli did the following levelling :-
(a) Sukkur-Hyderābād; the detachment which was a double one, worked in the beginning as 2 single detachments with Mr. J. N. Kohli and P. John as levellers, one levelling from Sukkur to Daur and the other from Hyderābäd to Daur. The old levelling of this did not close well; parts suspected to be weak were relevelled in 1926-27, but as it did not disclose any error, the whole line was relevelled. 7 primary and 234 secondary bench-marks were connected during the operation.
(b) On completion of (a) the 2 single detachments were amalgamated; the combined detachment did the secondary levelling of blocks $\mathrm{H}^{\prime}, \mathrm{I}^{\prime}, \mathrm{K}^{\prime}, \mathrm{L}^{\prime}$, and M^{\prime} of the Lloyd barrage project. St rectangulation pillar bench-marks and 76 other bench-marks were connected.
No. ; detachment under Mr. Lalbir Singh did the secondary levelling of blocks $\mathrm{Y}, \mathrm{Z}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$, part of F^{\prime} and G^{\prime} of the Lloyd barrage project. 159 rectangulation pillar bench-marks and 73 other benchmarks were connected.

No. 6 detachment under Mr . B. P. Rundev did the secondary levelling of blocks $V, ' T, U, X, Y, B^{\prime}, C^{\prime}$ and part of F^{\prime} of the Lloyd barrage project. 68 rectangulation pillar bench-marks and 216 other bench-marks were connected.
4. Discussion of results.-1. Jhang-Maghiāna-Wazīrābād-Ghakkar.-Fore and back levelling of this line was done during the same season as explained in $\S 3$. There was a discrepancy of 1 foot between the two levellings in a distance of 200 miles. Differences of fore and back values between consecutive bench-marks all agreed within permissible limits. Fore values agreed with old levelling; but there was a uniform accumulation of error in back levelling.

A statement of discrepancies is given below:-

Bench-mark			Consecutive Heiglits					
			Fore	Back	$\left\lvert\, \begin{gathered}\text { Fore } \\ - \\ \text { Back }\end{gathered}\right.$	Old	$\begin{aligned} & \text { Old } \\ & \text { Fore } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Old } \\ \text { Back } \end{gathered}$
			feet	feet	feet	feet	feet	feet
Ghakkar	0	- 00	. 00	. 00	- 00	. 00	. 00	. 00
Wazirrabād	11	. 07	+ 1.38	$+1.29$	+0.09	$+1.24$	-0.14	-0.05
Linla Mūsa	23	. 13	$+82.08$	+ 81.92	+0.16	$+81.96$	-0.12	+0.04
Sargodha Ry. R. H. ...	95	. 43	$-217 \cdot 21$	$-217 \cdot 55$	+0.34	-216.89	+0.32	+0.66
Sargodha Dt. l. H.	1	02	- 1.04	- 1.04	. 00	- 1.07	-0.03	-0.03
Lilla hill $\quad . .$.	9	.06	$+17 \cdot 70$	$+17 \cdot 66$	$+0.04$	$+17 \cdot 76$	$+0.06$	$+0.10$
Hundewali	4	. 04	- 17.94	- 17.98	+0.04	$-17 \cdot 95$	-0.01	$+0.03$
Sillanwali	11	. 07	- $26 \cdot 81$	- 26.83	+0.02	- 26.82	-0.01	$+0.01$
Sobhaga	11	. 07	- 31.88	- 31.92	+ $0 \cdot 04$	- 31.91	-0.03	$+0.01$
Sbial Jewāna .	13	. 08	- $27 \cdot 22$	- 27.32	$+0 \cdot 10$	- $27 \cdot 21$	$+0.01$	+0.11
Chünel ...	9	. 06	- 10.52	- 10.60	+ 0.08	-10.55	-0.03	$+0 \cdot 0.5$
Thetta Mahla ...	7	. 05	- 3.17	- 3.22	$+0.05$	- 3.19	-0.02	$+0.03$
Jhang f'ourt	8	- 06	- 7.44	- 7.46	+ 0.02	- 7.41	+0.03	+ $0 \cdot 05$
Jhang R. S.	1	. 02	$-\quad 1.40$	-1.40	. 00	-1.40	.00	-00
Total	203				+ 0.98		+0.03	+1.01

From the table it is evident that there was slow progressive error in back levelling. Levelling in both the directions was done by the same oiserver with the same instrument and staves. All the usual precautions against accumulation of error were observed. The accumulation was uniform; probable systematic errors between Ghakka-Sargodha and Sargodha..Jhang were $\cdot 00165$ feet per mile for both the parts. For a high precision levelling the allowable limit of probalie systematic error is $\cdot 00 \mathrm{~J} 06$. This line will therefore be revised.
2. Mohanpur-Rānīganj-This line was levelled in fore direction in 1924-25 and in back direction in 1925-26. Its starting point Mohanpur is a bench-mark of the line Howrah to Balasore. The height of
this bench-mark was only available this season after completion of the levelling of that line. The line was computed this season. It was adjusted between the value of the new bench-mark at Mohanpur and the old published height of Ranīganj which was derived from the adjustment of the old net; the closing error was $0 \cdot 88 \mathrm{ft}$. Howrah-Chāmpdãni-Burdwän -Rāniganj-Mohanpur-Howrah forms a small circuit of the new net. Closing error of the new levelling of this circuit is 0.16 ft . in 308 miles which proves that there is no serious error in the new levelling of Mohanpur to Rānīganj.
3. Dehra Dūn-Sahairanpur.-The following table shows the differences of heights obtained between the levellings of 1861-62,1905-07 and 1927-2S:-

Changes of heights between Sahāranpur and Dehra Dūn.-

0°	Bench-mark	Observed heights					
n		1861.62	1905-07	1927.28	$\left\lvert\, \begin{gathered}1905-07 \\ 1861.62\end{gathered}\right.$	1927-28	$1927-28$ $-781-62$
		feet	feet .	foet.	feet	feet	foet
41,539	S.B.M. Sahārnnpar	$\cdot 000$. 000	-000	. 000	. 000	- 000
49,336	Nojli T.S. (top of tower)		$+\quad 35 \cdot 188$	+ $35 \cdot 175$		-0.013	
9:33F	Fatehpur D.B.		+ 83.205	$+83 \cdot 162$		-0.043	...
17'53F	Moban ...	+ 686.676	$+587.003$	+ $587 \cdot 014$	$+0 \cdot 327$	+0.011	+0 338
150.33 F	Bonndary rtone		+1631.274	+1631-399	\cdots	+0.125	...
$151 / 53 \mathrm{~F}$	Asarori D. B. ...		+1566.328	$+1666.486$		+0.158	...
37.33 F	Mobaliamáa ...	+1198.834	$+1194 \cdot 197$	$+1194.258$	$+0 \cdot 363$	$+0.061$	$+0.424$
15\%53F	Dehra Dūd HaseLine E. End...	$+1056 \cdot 346$	+1056•736	$+1056 \cdot 778$	+ 0.390	+0.042	$+0.432$
1:33J	Dehra Dün Irrin plige	+1326.408	$+1326 \cdot 849$	+1826.945	+0.441	+0.096	+0.537

Rises between 1861-62 and 1905-07 were attributed by Sir Sidney Burrarl, к.c.s.i, r.e., f.rs., to the Kangra Valley earthquake of 190;. Levelling of 1907-28 points to a further rise of the Siwalibs andl of Dehra Din over Sahāranpur. The rise is however not very phenomenal. As it is not impossible that such differences may be due to ismerance of staff error and other sources of systematic errors, no definite couchsiou can be drawn at present.
4. Snhivanpur-Ambila-Ludhiñna.-In the annual report on Standard bench-marks. Garrison Engineer Ambăla reported that there was subsidenre of ground near the S tandard bench-mark situated in the rompmund of St. Paul's C'hurch, Ainbala Cant. and that there appeared to he a subterranean crack in the ground. The bench-mark was connected last winter while levelling from Sahåranpur to Ambāla; examination of this levelling showed that the ground about St. Paul's Church has sunk by about f inch below that about the Roman Catholic Church which
has itself sunk by $\frac{1}{2}$ inch below the grounds about the Wesleyan Church. This revelation led to further comparison of the old and new levelling between Sahäranpur and Ambāla. The comparison indicated that there was a slow steady rise of ground up to Jagādhri and then a slow fall up to 3 miles beyond Ambäla. The new levelling was done last winter in one direction only. The maximum rise indicated is 2 inches only. It may be noted that in 1912-14, bench-mark $71 / 53 \mathrm{~B}$ at St. Paul's Cathedral was found to have subsided by 7 inches since its original connection in 1860-62. The levelling of this line will be further scrutinised next year when the back levelling is completed.
5. Nulchtaràna Motā-Tatta: Crossing of the Indus river.--The Indus was crossed between Sujāwal and Tatta near Saidpur ferry ghāt. The crossing was made at 3 sites by different methods.

1st site.-_One Zeiss Model III and one American binocular level fitted with micrometer eye-piece were on an island; distances of staves from the instruments were 980 and 920 feet for back and fore staves respectively; height of ray was 5 feet above water in each case. Direct readings of staves were taken with Zeiss level and micrometer readings were taken to targets fixed on staves at the height of 4.5 feet with the American binocular level.

2nd site.-(close to 1st. site). Instruments as above were on the right bank of the river. One staff was across the river; the other staff was on the same bank as the instrument but across a bay so that both the rays were over the water, but one ray was close to right bank; distances of the staves from instruments were $j, 608$ and $1,42+$ feet for back and fore staves respectively. Height of the eye was 5 feet above water in each case. Readings were taken by Zeiss level on targets sliding on staves and by American binocular level by targets fixed at 1.5 ft . on back staff and $3 \cdot 0 \mathrm{ft}$. on fore staff.
$3 \cdot d$ site.-($\frac{1}{4}$ mile below the 1st. site). 2 micrometer levels were on oppow banks. Targets were fixed at object ends of levels. Simultaneous arlings of targets were taken by micrometer levels and the nearest saff was directly read. Instruments were on a high bank close to the wapr ; height of rays was 11 feet above water; distance between levels $\begin{aligned} & \text { wa: } 1,400 \text { feet. } \\ & \text {. }\end{aligned}$

At the same site another set was taken in the same way but with the instrument of the right bank away from the lank with 680 fect of sand between the instrument and water. Rays were 16 feet above water.

In every site and in all cases the collimations wete very carefulis determined immediately before observations and were frequently clifched during olservations.

For determining the lenerth of rays, a base 10 chains long was measured with Gunter's chain and plane-table triangulation was doue from this base on a scale of 200 feet $=1$ inch.

A summary of the results is given below:-

(a) back staff (b) fore staff

Undoubtedly the best method of crossing a river is by equidistant rays over water from an island, as this cancels most of the errors. In a short crossing like this where the width of the river is below 2,000 feet, any of the other methods may be adopted, if no island is available.
5. Probable errors.-Probable errors of high precision lines were computed by the formulæ: $-\sigma_{r}=\frac{S}{3 \mathrm{~L}} ; \boldsymbol{\eta}_{r}=\sqrt{\left[\frac{\sum \Delta^{2}}{9 \mathrm{~L}}-\sigma_{r}^{2} \times \frac{5_{r^{2}}}{\mathrm{~L}}\right]}$ where $\sigma_{r}=$ probable systematic error.
$\eta_{r}=$ probable accidental error.
$\Delta=$ discordance of the results of the fore and back levelling between consecutive bench-marks.
$S=$ total discordance.
$\mathrm{r}=$ distance between consecutive bench-marks.
$\mathrm{I}_{1}=$ Total distance
These are given below in foot and mile units:-

İine	Probable accidental error	Prolable systematic error
	feet	feet
1 Muttra-Hāthras	$\pm .00280$	$\pm .00025$
2 Howrah-Balasore	$\pm \cdot 00290$	$\pm .00050$
3 Sahāranpur-Dehra Dūn	$\begin{aligned} & \pm \\ & \pm \cdot 00: 354 \end{aligned}$	$\pm .00130$
4 Buhar-Tatta	$\pm \cdot 00333$	$\pm \cdot 00037$

Permissible accidental and systematic errors are $\pm \cdot 00416 \mathrm{ft}$. and $\pm \cdot 00106 \mathrm{ft}$ respectively.

Probable error of secondary levelling computed by the formula

$$
\text { p.e. }=\frac{1}{3} \sqrt{\frac{\Sigma \Delta^{2}}{L}} \text { is }:-
$$

Jabboāna-Kot Māldeo $\pm \cdot 0051 \mathrm{ft}$.
6. Progress of the new level net.-The following additions were made to the completed mileage of the new level net:-

Line No.	Name of Line	- Miles completd on main line	Remarks.
104	Viramgām-Tatta	53	Portion Bubar-Nakhtaraña not yet done
140	Muttra-Bareilly	27	Muttra-Bareilly line is completed
121	Calcutta-Bhadrakh	153	Portion Balasore-Bhadrakh not yet done.
101.4	Sukkur-Hyderābād	94	Portion Bändbi- Hyderābäd not jet done.
Previo Total	Ty reported Total pleted	$\begin{array}{r} 327 \\ 4999 \\ 5326 \end{array}$	

7. Research work.-Results of Capt. Bomford's researches on (1) Levelling across unbridged rivers (2) Error due to refraction when levelling up a hill (3) The correction for staff length, are published in Prolessional Paper No. 22 "Three Sources of Error in Precise Levelling '". His conclusions and recommendations are given below :-
(1) Levelling across unbridged rivers.- There are not many wide unbridged river crossings in the primary net, and it will be proper to go to some expense to cross them; it is suggested that some or all of the following recommendations be acted on:-
(a) That levels with micrometer eye-pieces be used. The levels to change sides daily. If it is not practicable to change sides, and if an irreversible instrument is used, collimation must be done by Gauss' method, on account of the risk of change of collimation with change of focus.
(b) That crossings be made at a number of sites ecvering sonae miles of the banks. No elaborate preparations should be made at each site. One day's work should be done at nacl:, and not more than one day should be wasted beiween each.
(c) If suitable sites can be found, and if high level crossime ere not available, the level may be set up in the middle , the the river on an island. A very firm base is not requitun! th is only necessary that the level should be steady whe fite
observer is sitting still, and that it should not change height by more than half ar inch while he changes from one side of it to the other.
By using 3 levels in such a case an increase of accuracy can be obtained, each half of the river being crossed by reciprocal ancles. The centre observer works with each of the other two in turn. It is not necessary to measure the height of his instrument on a back staff, and if the rays are equal his collimation error is immaterial.
If the crossing is more than $1 \frac{1}{2}$ miles wide every endeavour should be made to do this, even to the extent of sinking a woodert frame full of stones in shallow water. Such a crossing is twice as grood as a simple crossing at water level.
(d) Sites just below river junctions should be avoided as a precaution against systematic differences of water temperature on either side.
(e) The whole of the observations should not be made when a prevalent wind is blowing from one side to the other. The observations of any one day may be so done but not the whole of the work
(f) Increased height may perhaps be obtained artificially by stagiing, as is done in triangulation. But it is probable that the necessary preparations would lead to an expenditure of time, which would have been better spent on making more numerous crossings.
(g) Water-gauges should also be used in several well separated sites if possible; if the conditions are suitable it is possible that they would give more consistent results than the levels. 'I'he observations might perhaps be made on the same days as the other crossings, so avoiding waste of time.
(७) Eirors due to refraction when levelling up a hill.

Rule 1. - If the rise in any section about 5 miles in length average less than 1 foot per station (i.e. 50 feet in 5 miles), that section is consilered hat and no action is necessary.

Sole f.-When taking out the average rise, any negative rises are of course numerically subtracted from the positive rises.

Fite B.-With shots averaging 4 chains, and $d^{2} T / \mathrm{dh}^{3}=020^{\circ} \mathrm{C}$ per $f t^{2}$, this rule allows an error of 002 per mile, which is tolerable for conerbrable distances.

Ruie 2.-If the country is not flat as defined in rule (1), it is mosilere! to have a dangerously persistent gradient after it has risen more than in feet, if the leugth of the shots (station to staif) in which the rise has ofcurred has averaged 3 chains or nicre, or liof feet if the shots have averaued between $1 \frac{1}{2}$ and 3 chains. If they liwe areaged less than it chains there is no limit.

Note C. This rule admits an error of $\cdot 010 \mathrm{ft}$. before any action is taken.

Rule 3. Once a gradient has been found to be persistent (i. e. after it has risen 5 () or 100 feet as above) the length of shot must be reduced to $l \frac{1}{2}$ chains, until such time as the gradient is reversed or so reduced that the rise per station does not average more than 1 foot with a longer shot.

Note D. $\quad 1 \frac{1}{2}$ chain shots admit an error of $\cdot 005$ per mile (at the worst slope). 'This can be tolerated for some miles.

Note \boldsymbol{L}. If the gradient be reversed or reduced as above for one or more consecntive shots, the length of these shots should not be restricted, but the dangerously persistent gradient cannot be considered to have ceased until the down hill or level has continued for at least one mile (see also note F). i. e. if the rise be resumed before one mile, the length of shot must iminediately be reduced to $1 \frac{1}{2}$ chains, without waiting for a second rise of 50 or 100 ft .

Note \boldsymbol{F}. If after reversal the down hill gradient be such as to come under rule (2), the up grade is considered to have ceased and the length of shot must in due course be reduced on account of the down grade.

Rule 4. The above 3 rules are repeated substituting the words "fall" for " rise", "down" for "up" and vice versa.

If, in future, temperature measurements should again be made and a correction applied, it would be better to take the temperature at three points vertically above each other near the instrument. For $\mathrm{d}^{2} \mathrm{~T} / \mathrm{dh}^{2}$ is the essential quantity which has to be measured, and it is much better determined by 3 such measures at one place, than by measures at 3 places some chains apart.
(3) The correction for staff length.-It is concluded that the present method of applying the correction is satisfactory, but that staves should be paired to within $000+$ (i. e. $0 \cdot 004 \mathrm{ft}$.). If they start the season within $0 \cdot 002 \mathrm{ft}$. the above limit is not likely to be exceeded. If it should be exceeded, the desirability of applying the correction more rigoreusly should be considered.

TABLE 1.- W'abular statement of out-turn of work, season 1927-28-(contal.).

TABT, 1 - Tatalar statement of ont-turn of norli, season 1927-28-(contd.).

TABLE 1.—Tabular statement of out-turn of work, season 1927-28-(concld.).

TABLE 2.-Check-levelling.

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			Difference (oleck- original). The sign +denotes that the heigbt wras greater and the sign-less in $1927-28$ than when originally levelled
			miles		feet	feet	feel
Line 55 P (Jabborina to Kot Māldeo) at Jabboãna							
180	44 A	B.OM. on tri : pillar ...	0.00	1926-27	$0 \cdot 000$	$0 \cdot 000$	0.000
181	'	$\begin{array}{cc} \text { H.P. B.M. } & \text { (Type B) at } \\ \text { A.D. } 1926 \quad \text { Jabboãna ... } \end{array}$	0.34		1 +0.407	\vdots +0.391	-0.016
184 182	"	B.OM. on tri : pillar B.OM. on	0.57 0.48	"	$\begin{array}{r}-1.657 \\ +\quad 3.850 \\ \hline\end{array}$	-1.662 +3.847	-0.005 -0.003
183	"	B.OM. on plinth' of schuol	0.54	"	+3.882 $+\quad 2$	+ +2.780	-0.002
Line 136 (Jhang to Lahore) at Jhang-Maghiana							
74	44 A		$0 \cdot 00$	1911-13	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
169	"	B. OM. at Depaty Commissioner's office...	$0 \cdot 78$	1921-22	+ 8.987	$+8.983$	-0.004
168	י'	```G.T.S O on bridge ... B.M. G.'I.S.```	0.96	\& 23-24	$+7.554$	$+7 \cdot 550$	-0.004
71	"	\square (Type B) at Session B.M. house ... 1911	1.22	191113	$+1 \cdot 398$	$+1 \cdot 396$	-0.002
167	"	G.T.S. B.M. tabsil B...	1-36	$\begin{array}{r} 1921.22 \\ \& 23.24 \end{array}$	+8.623	$+8 \cdot 618$	-0.005
Line 136 (Jhang to Lahore) at Sargodha							
78	43 D	$\begin{aligned} & \text { G.T.S. } \\ & \square \\ & \text { R.M. } \\ & 1911 \end{aligned}$	$0 \cdot 00$	$\begin{aligned} & 1911-12 \\ & \& 12-13 \end{aligned}$	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
76	'	$\begin{array}{cl}\text { G.T.S. } \\ \text { O. } & \text { near M.S. } 17\end{array}$	$2 \cdot 01$	"	$+7.797$	$+7.757$	-0.040
74	..	B.M. 15	$3 \cdot 44$		$+13 \cdot 314$	$+13 \cdot 300$	-0.014
73	-	\uparrow on bridge \ldots	$4 \cdot 82$	"	$+8.7+1$	$+8 \cdot 736$	-0.005
72	"	$\begin{aligned} & \text { G.T.S. } \\ & \underset{\text { B.M. }}{ } \\ & \text { near M.S. } 14 \quad \ldots \end{aligned}$	$4 \cdot 84$	"	+ 9.467	$+9 \cdot 467$	0.000
71	"	G.T.S. O B.M. at fonr mill	$4 \cdot 97$	"	$+5 \cdot 705$	+ $5 \cdot 668$	-0.017

TABLE 2.—Check-levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Line 136 (Jhang to Lahore) at Wazīräbād

45	43 L	$\left\lvert\, \begin{array}{cr} \text { G.T.S. } & \text { at S. end of Palkhu } \\ \text { O } \\ \text { B.M. bridge } & \text {... } \end{array}\right.$	$0 \cdot 00$	1922	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
46	"	$\left\lvert\, \begin{array}{cr}\text { + at railway } & \text { officer's } \\ \text { rest house } & \ldots\end{array}\right.$		"	$-10 \cdot 121$	-10.109	+0.012
47		$\begin{aligned} & \text { G.T.S. } \\ & \mathrm{O} \text { at well } \\ & \text { B.M. } \end{aligned}$	$0 \cdot 87$	"	-10-142	- 10.173	-0.031
48	"		$2 \cdot 10$	"	-14.991	$-15 \cdot 007$	-0.016

Line 140 (Muttra to Bareilly) at Häthras

22	541	$\|$G.I'S. Q.M. (Type B) at Hāthras B.M. R.S. ... A.D. 905.	$0 \cdot 0$	1915-16	0.000	$0 \cdot 000$	$0 \cdot 000$
21.	"	B.M. ${ }^{\text {al, Hāthras R.S. ... }}$	$0 \cdot 0$	"	$+2 \cdot 932$	+2.929	-0.003
88	"	$\begin{aligned} & \text { G.'I.S. } \\ & \text { O at Mabādeo's temple } \\ & \text { B.M. } \end{aligned}$	$0 \cdot 5$	"	+3.878	$+3 \cdot 290$	+0.012
20	"	$\begin{aligned} & \text { G.T.S. } \\ & \begin{array}{l} O \\ \text { B.M. } \end{array} \text { at Hātluras I. B. } \end{aligned}$	$1 \cdot 1$,	+3•375	$+3 \cdot 365$	--0.010
13	'	Stone Bench-mark (wo inscription) at Hithras I.B.	$1 \cdot 2$	"	$+0 \cdot 987$	+0.975	-0.012
Line 140 (Muttra to Bareilly) at Muttra							
25	54 E	Standard, Muttra ...	$0 \cdot 0$	1905.06	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
163	"	$\left\lvert\, \begin{aligned} & \text { A.T.S. } \\ & \begin{array}{l} \mathrm{O} . \mathrm{M} . \end{array} \text { on stone } \quad \ldots \end{aligned}\right.$	$0 \cdot 1$	1025-27	-0.027	-0.028	-0.001

TABLE 2.-Check-levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Hench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			Difference (checkThe sigu +denotes that the height was greater and the sign-, les than when origiunlly levelled levelled
			miles		feet	feet	feet
Line 121 (Howrah to Bhadrakh) at Balasore							
78	73 に	Standard, Balasore ...	$0 \cdot 0$	1881-83	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
79	"	$\begin{aligned} & \text { G.'I.S. } \\ & \text { O.M. at manicipal office } \\ & \text { B.M. } \end{aligned}$	$0 \cdot 9$	"	+ $4 \cdot 176$	$+4 \cdot 171$	-0.005
61	"	O at Mahādeo's temple B. M.	1.4	"	$+3 \cdot 817$	+ 3•864	+0.047
64	"	G.T.S. \square (Type B) at Circuit B.M. house \ldots A.D. 1881	$1 \cdot 9$	"	+14.458	$+14 \cdot 432$	-0.026
Line 104 (Viramgàm to Tatta) at Bhiuj							
95 83	41 E	B.OM. on rock in situ ... G.T.S.	$0 \cdot 00$	$1921-22$ $\& 23.24$	0000	$0 \cdot 000$	$0 \cdot 000$
(21)	'	O on step B.M.	$0 \cdot 31$	-	$+6 \cdot 193$	$+6 \cdot 190$	-0.003
93	-	B.O . on stone ...	$0 \cdot 35$	-,	+ $7 \cdot 969$	+ 7.968	-0.001
85	"	+ at memorial ...	$0 \cdot 41$	"	+ 2.088	$+2 \cdot 185$	-0.003
86	..	B.OM. on stone flooring	$0 \cdot 57$	"	+ 4.546	$+4 \cdot 540$	-0.006
88	.	\bigcirc on plinth ..	$0 \cdot 79$	".	- 0.300	- 0.337	-0.037
90	,	H.OM. on stone flooring	0.83		- 5.456		-0036
91	"	B.OM. on step	$0 \cdot 88$	",	- 5.981	-6.09	-0.038
96	.	B.OM. on flonring $\quad .$.	0.03	",	+ $2 \cdot 286$	$+2.283$	-0.003
Line 104 (Viramgām to Tatta) at Anj̄̄\%.							
E4 (3)	41 I	(Type B) at Anjār G.T.S.	$0 \cdot 00$	$\begin{aligned} & 1921-22 \\ & \& 23.24 \end{aligned}$	$0 \cdot 000$	$0 \cdot 000$	0.000
65	-	B.M. O. C.S.	0.03	"	- 4.661	- 4.662	- 0.001
RF, (1)	.	$\underset{\text { B.M. }}{\bigcirc} \quad \text { " } \quad \text { step ... }$	2.68	',	$+8.549$	$+8 \cdot 5.7$	+ 0.008
63	.		$1 \cdot 89$	"	-64.683	-64.671	+ 0.012
62	-	O.S. . ., ...	$3 \cdot 26$	"	- 74.293	-74.292	+0.001
14)		B. M		,			

TABLE 2.-Check-levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			Difference (check origizal). The sign t denotes that the height was greater gnd the sign- leess in 1927.20 than when originally levelled.
			miles		feet	feet	feet
Line 104 (Viramgān to Tatta) at Nakhtarāna Motà							
37	41 E	('Trpe B) at Nakhtarãna...	0.00	$1921-22$ $\& 23-24$	0.000	0.000	$0 \cdot 000$
130	\because	G T.S. $\underset{O}{O}$ B.M	0.02	"	+ $2 \cdot 095$	+ $2 \cdot 092$	-0.003
129		B.CM. on rock in situ ... G.I'.S.	$0 \cdot 10$	"	$+3 \cdot 655$	$+3.656$	$+0.001$
36		O at platform ... B.M.	$3 \cdot 76$		-. 5.506	$-5 \cdot 595$	-0.019
Line 101 (Karāchi to Khānpur) at Sukkur							
98	40 A	(Type C) E. of Loco store	$0 \cdot 0$	1921.23	$0 \cdot 000$	0.000	0.000
100	"	(Type C) at King's Hill Battery	1.0	"	$+50 \cdot 310$	+50.335	+0.025
$\left\|\begin{array}{l} 249 \\ (49) \end{array}\right\|$	"	G.T.S. at traveller's B. M galow	$1 \cdot 2$,	+ $35 \cdot 455$	+ $35 \cdot 472$	+0.017
251	"	B.OM. on reservoir step	$2 \cdot 0$	"	+13.201	$+13 \cdot 207$	$+0.006$
101	"	S.B.M. at Sukkur	$2 \cdot 1$		+ $49 \cdot 074$	+ $49 \cdot 112$	+0.038
Line 150 (Kotri to Barmer) at Hyderābād							
161	40%	S.B.M. at Hyderābūd ...	$0 \cdot 0$	1924-26	$0 \cdot 000$	$0 \cdot 000$	0.000
217	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { O at tappadār's school } \\ & \text { B.M. } \end{aligned}$	$1 \cdot 1$	"	- $29 \cdot 235$	$-29 \cdot 239$	-0.004
33	*	$\begin{aligned} & \text { G.T.S. } \\ & \bigcirc \text { © on bridge No. } 7 \text {... } \\ & \text { B.M. } \end{aligned}$	$1 \cdot 6$	"	$-14 \cdot 133$	$-14 \cdot 140$	-0.007
416	"	B. OM. on cnlvert No. 17...	$1 \cdot 1$	"	-30.26i2	$-30 \cdot 763$	+0.039
$41 \overline{7}$	"	B.OM. on water column ...	$1 \cdot 3$	"	-30.548	$-30 \cdot 612$	$+0.037$
418	\cdots	B.OM. , , piaio ...	$2 \cdot 0$	"	-31.957	-31.928	$+0 \cdot 0 \div 9$
419	"	B. M. on boundary pillar	$3 \cdot 0$	\cdots	+31-209	+31.270	$+0 \cdot 067$
152	"	(Type C) at Ganjo Takkar bill	3. 1	"	$+.32 \cdot 164$	$+32 \cdot 246$	+0.082

TABLE 2.-Check-levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

TABLE 2.-Check-levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connectad for cheok-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			
No.	Degre日	1)escription		Date of original levelling	Original levelling	Check. levelling 1927.28	
			miles		feet	feet	feet

Line 101 A (Sukkur to Hyderäbād) at Kandiāro Road R.S.

1	40 A	$\left\lvert\, \begin{aligned} & \text { G.T.S. } \\ & O \\ & B . M . \end{aligned}\right.$	$0 \cdot 0$	1927-28	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
305	"	$\begin{aligned} & \text { G.I'S. } \\ & 0 \\ & \text { B.M. on culvert No. } 37 \end{aligned}$	$1 \cdot 5$	"	-0.986	-0.992	-0.006
179	40 B	$\begin{aligned} & \text { G.'T.S. } \\ & 0 \\ & \text { B.M. Randiño Road } \\ & \text { R.S } \end{aligned}$	$2 \cdot 4$	"	+ $5 \cdot 253$	+ 5228	-0.025
$\left\|\begin{array}{l} 180 \\ (50) \end{array}\right\|$	"	$\begin{aligned} & \text { G.I'.S. } \\ & \mathrm{O} \text { on bridge No. } 33 \ldots \\ & \text { B.M. } \end{aligned}$	$4 \cdot 3$	"	- 0.353	- 0.389	-0.036
181	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. } \end{aligned}$	$5 \cdot 4$	"	- 5.224	- 5.284	-0.060
$\left\|\begin{array}{c} 182 \\ (49) \end{array}\right\|$	"	$\begin{aligned} & \text { G.J.S. } \\ & \mathrm{O} \text { on masonry pillar ... } \\ & \text { B.M. } \end{aligned}$	$6 \cdot 0$	"	- 5.502	-5.572	-0.070
183	"	$\begin{aligned} & \text { G.T.S. } \\ & O \text { on culvert No. } 28 \ldots \\ & \text { B.M. } \end{aligned}$	S.2	,	- 6.398	-6.505	-0.107
184	"	$\begin{array}{lll} \text { G.T.S. } \\ O \\ \text { B.M. } \end{array} \quad, \quad \text {, } \quad 23 \ldots$	$8 \cdot 8$	"	- $7 \cdot 730$	- 7.842	$-0 \cdot 112$
185	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. at Bhiria Rd. R.S. .. } \\ & \text { B.M. } \end{aligned}$	$10 \cdot 5$	"	- 4.919	- 5.048	-0.120

Line $52 L$ (Dant to Bāndhi) at Moro

42*	40 i	L.B. at Moro	0.0	1905.26	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
41*		B. \uparrow M. B. \bigcirc M. ar, I.f. Morn	0.0		+ 1.066	$+1.067$	+0.001
$3{ }^{*}$	$33^{\prime \prime}$ N	B. ○M. on M.S, Moro 1 ... (t.T.S	0.6	"	$+1.181$	+ 1.601	-0.080
136	40 l	$\begin{array}{ccc}\text { A.T.S } & \text { at District bungalow, } \\ \text { B.M. } & \text { Moro } & \text {... }\end{array}$	1.6	"	$-1 \cdot 303$	- $1 \cdot 3.54$	+ $6 \cdot 010$
44*	,	G.T.S. $\begin{aligned} & \mathrm{O} \\ & \text { B.M. at Poṣt Office, Moro } \end{aligned}$	$1 \cdot 7$	"	- 0.601	- 0.578	+ $1 \cdot 0.03$

* Serial Nos. in Line 52 L (Danr to Bãndhi)

TABLE 2.-Check-levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

* Serial Nos. in Line 52 L (Danr to Bāndhi).

TABLE 2.-Check-levelling—(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected for check-levelling				Observed height above (+) or below (-) starting bench-mark, as determined by			Difference(check-original).The eign+denotesthat theheightwasgrenterand thesign-,lessin $1927-28$than whenoriginallylevelled
	Degree sheet	Description		Date of original levelling	Original levelling	Checklevelling 1927.28	
			miles		feet	feet	feet
Line п̄2 C (Shähpur to Mahroubpur) at Mahrābpur							
$\begin{aligned} & 217 \\ & 216 \\ & 215 \\ & 214 \\ & 213 \\ & 212 \\ & \hline \end{aligned}$	10 A	$\left\lvert\, \begin{gathered}\text { G.'I'S. O B.M. at P.W.D. } \\ \text { I.B., Mahrābpur }\end{gathered}\right.$	0.00	1921.22	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
		B.OM. on culvert ${ }^{\text {a }}$...	0.00 4.48		0.000 +8.509	+ 8.502	-0.007
	,"	B.OM. , ", ...	5.43		+ 9677	+ 9.693	+0.016
	-,	B.OM .. ,"	$6 \cdot 79$		+ 6.169	+ 6.230	+0.061
	.	Top of iron pipe ...	7-25	",	+ 8.000	-8.057	$+0.057$
	"	B.OM. on culvert ...	$10 \cdot 38$	"	$+5 \cdot 230$	$+5.293$	+ 0. 63
Line 101 (Karāchi to Khinpur) at Mehar							
59	35 M	G.I'S. O Musto's type at B.M. Mehar \ldots A.D. 1921	$0 \cdot 00$	1920-21	$0 \cdot 000$	0.000	$0 \cdot 000$
57	-	(i.T S. on zinc plate ...	0.83		- 7.4.08	- 7.405	+0.003
		B.M. ${ }^{\text {M }}$		"			
60	"						
		B.M. office \quad..	0.46	,	-0.373	-0.377	-0.004
61	"	G.T.S. O on bridge	0.55		+ 8.089	$+8.077$	-0.012
		B.M.					
6:	,	G.T.S. O ,. culvert ...	1.83	"	- 0.969	- 1-042	-0.073
		13.M.					
65	"	○ ," bridge	$5 \cdot 03$	"	-15.228	$+15 \cdot 220$	-0.003
		R. 1					
66		O. Musto's trpe at					
		$\left\lvert\, \begin{gathered} \text { R.M. } \\ \text { A.D. } 1921 \end{gathered}\right. \text { Kolancibi village }$	$5 \cdot 11$		-0.316	- 0.344	$-0 \cdot 028$
Line 101 (Karachi to Khanpuu) at Kihkar							
23	35 N	G.T.S					
		O at I, B. Kākar	0.00	$1920 \cdot 21$	$0 \cdot 000$	$0 \cdot 000$	0.000
22		B.M. B. \bigcirc M. on bridge	0.17		+9.427	$+9 \cdot 440$	$+0.013$
	,	B. OM. on bridge G.T.S.	$0 \cdot 17$	"	+ 9.427	$+3 \cdot 440$	$+0.013$
21	"	O on wheel gnard B. M. stone	0.47	,	- $3 \cdot 309$	-3.304	+0.005
19	"	G.T.S. O on culvert	2-48	"	- $4 \cdot 834$	- $4 \cdot 830$	+0.004

TABLE 2.-Check-levelling-(concld.).
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelliny.
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric beights, above (+) or below (-) the starting beuch-mark			Difference (revision -origi. nal. The gign denotes that the height was greater nnd the sign-, lege in 192.-28 than when originally levelled
			miles		feet	feet	feet
Part of Line 140 (Muttra to Häthras)							
25	54 E	Standard, Muttra	$0 \cdot 0$	1905-06	$0 \cdot 000$	$0 \cdot 000$	0.000
40	"	at Kachahri	$0 \cdot 0$	"	+ 2.035	$+2.032$	-0.003
21	"	on culvert	$0 \cdot 9$		+ 5.680	+ 5.682	+0.002
20	"	at Muttra R.S.	$1 \cdot 4$,	+ 13.527	+ $13 \cdot 529$	+0.002
(191)	"	(Type B) at Muttra	$1 \cdot 5$	1925-27	$+13.703$	$+13.692$	-0.011
18	"	on bridge	$2 \cdot 1$	1905-06	$+1.857$	$+1.835$	-0.022
39	"	"	$2 \cdot 4$,"	$+1.609$	$+1.610$	+0.001
16	"		$2 \cdot 4$,	$+1.619$	+ 1.831	+0.012
16	,"	on pillar	$4 \cdot 1$	"	+ 4.005	$+4.019$	+0.014
15	"	on culvert	$5 \cdot 9$	"	+ 9.521	+ 9.630	$+0.009$
14	"	on bridge	$7 \cdot 5$	"	+ 30.038	+ 30.046	$+0.008$
13	,	(Type B) at Raya R.s.	9.4	"	+ 24.853	+ 24.876	+0.023
12	,	on stone	$10 \cdot 1$	"	+ 22.645	+ $22 \cdot 673$	$+0.028$
11	,	on bridge	$11 \cdot 6$	"	$+23.455$	+ 23.428	-0.027
10 9	"	" "	$13 \cdot 4$	",	+ 24.382	+ 24.361	-0.021
9	"	on stone pillar	14.8	,	+ 21.630	+ 21.554	-0.076
8 7	"	on bridge	$16 \cdot 3$	"	+ 24.768	+ 24.703	-0.060
7	"	on drain	$17 \cdot 4$	"	+ $17 \cdot 874$	+ 17.822	-0.052
1	\cdots	(Type B) at Mursān R.S.	$19 \cdot 0$	"	+ $12.24{ }^{+}$	+ $12 \cdot 177$	-0.070
		on well	$\underline{-2 \cdot 0}$,	+ $21.802+$	+ $21 \cdot 723$	-0.079
19 22 22		Telegraph office (Type B) at Hãthras li.S.	$26 \cdot 2$ $26 \cdot 7$		+24.920 +24.327	+24.946 +24.238	+0.025 -0.089
Part of Line 121 (Lowrah to Balasore)							
$\begin{aligned} & 455 \\ & 267 \\ & 456 \\ & 458 \\ & 265 \\ & 264 \\ & 847 \\ & (454) \\ & 453 \\ & 821 \\ & 828 \\ & 827 \\ & 825 \\ & 824 \end{aligned}$	79 B	at civil court, Howrah \ldots on platform \ldots on lever \ldots on sluice \ldots on memorial vase \ldots at Supdt's house, Sibpur... at lamp.post \ldots at I. \&. T. O. \ldots on seat \ldots on plintb \ldots on step \ldots at Supdts quarters \ldots at waiting ball \ldots	$0 \cdot 0$	1913-14	0.000	$0 \cdot 000$	0.000
	",		$0 \cdot 4$	101314	- 3.792-	- $3 \cdot 820$	-0.028
	,		$3 \cdot 0$	",	- $4 \cdot 160-$	- 4.161	-0.001
	"		$3 \cdot 6$		- 2.560	- 2.581	-0.021
	"		$4 \cdot 8$	1881.88	- 1.466-	- 1-537	$+0.109$
	"		$5 \cdot 1$	1913-14	- 5.024	5030	-0.006
	"		$0 \cdot 2$	1924-25	- 0.712	$0 \cdot 150$	+0.023
	"		$0 \cdot 3$	1913-14	- 0.821	- 0.824	-0.005
	"		$0 \cdot 6$	1921-25	$+0.859$	+ $0 \cdot 8.81$	$+0 \cdot 002$
	"		$1 \cdot 2$		- 4.6449	- 4.cll	+0.038
	$"$		$1 \cdot 3$		1.582	- 1.60	$+0.006$
	"		1.5		1.362	- 1-3\%	-0.020
	',		$1 \cdot 6$			- 0.689	-0.016

TABLE 3.-Revision levelling-(contd.).

Discrepencies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were conuected during the revisionary operations				Difference between orthometric Leights, above (+) or below (the starting bench-mark			
No.	$\begin{aligned} & \text { Degree } \\ & \text { ghce } \end{aligned}$	Description		$\begin{gathered} \text { Date of } \\ \text { original } \\ \text { levelling } \end{gathered}$	$\begin{gathered} \text { From } \\ \text { publighed } \\ \text { heights } \end{gathered}$	From revision 1027-2 (ungdjust. ed)	
			miles		feet	feet	feet
Part of branch line 61 A (Sahüranpur to Dehra Dūn)-(contd.)							
15	53 F	B. OM. on bridge No. $\frac{1}{81}$	$22 \cdot 5$	1905-07	+ 206.915	+208.895	-0.020
17	"	Stone B.M. at Mohan	27.2	"	+ 586.955	+ $586 \cdot 994$	+0.039
18	"	${ }_{B}$ on boundary stone	28.0	"	+689.011	+689.019	+0.008
19	"	G. B. M. on bridge No. $\frac{2}{94} \ldots$	28.2	"	+ 706.197	+ $706 \cdot 246$	+0.049
20	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. } \\ & \text { B. } \end{aligned}$	$28 \cdot 6$	"	+742.332	+ $742 \cdot 402$	+0.070
21	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. on iron bridge ... } \end{aligned}$	$29 \cdot 8$	"	+ 824.400	+ $824 \cdot 494$	+0.094
22	"	G.T.S. ${ }_{\text {B.M. }}^{\text {Q. }}$ on bridge No. $\frac{4}{96} \cdots$	30-3	"	+876.561	+ $876 \cdot 651$	+0.090
23	"		$30 \cdot 8$	"	+933.976	+ $934 \cdot 071$	+0.0.95
24	"	$\underset{\substack{\text { G.T.S. } \\ \text { B.M. } \\ \text { B. }}}{ } \quad, \quad, \quad \frac{14}{98} \cdots$	$32 \cdot 9$	"	+ $1289 \cdot 811$	+ 1290.037	+0.126
25	"	\uparrow on boundary stone... G.T.s	33.2	"	+ 1316.589	+ 1316.710	+0.121
26	"	B. M. on bridge No. $\frac{6}{99} \ldots$	$33 \cdot 4$	"	+ 1367.043	+ 1368.058	+0.115
27	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. } \end{aligned} \quad, \quad, \quad \frac{11}{99} \cdots$	$33 \cdot 9$	"	+1462.713	+ $1462 \cdot 663$	+0.150
28	"	$\left\{\begin{array}{l} \text { G.T.S. } \\ \text { B.M. } \end{array} \quad, \quad, \quad \frac{5}{100} \ldots\right.$	$34 \cdot 2$	"	+ 1542.096	+ 1542.240	+0.154
30	,	\uparrow on houndary stone...	34.6	"	+ 1631 $\cdot 07$	+ $1631 \cdot 371$	$+0 \cdot 16.4$
31	,	B. OM. on astronomical pillar	35.0	,	+ 1566.261	+ 1566.459	+0.198
33	"	$\begin{aligned} & \text { G.T.S. } \\ & \begin{array}{l} \text { B.M. } \end{array} \text { on bridge No. } \frac{3}{101} \cdots \end{aligned}$	35.3	"	+ 1441.779	+ 1491.941	+0.112
35	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { O.M. Emberldel at Aañrori } \\ & \text { B.M. } \end{aligned}$	36.0	"	+ 1408:37	+ $1405 \cdot 651$	$+0 \cdot 111$

TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations			$\begin{gathered} \text { Distance from starting } \\ \text { bench-mark } \end{gathered}$	Difference between orthometric heights, above (+) or below (-) the sturtiug bench-mark			
			miles		feet	feet	feet
Part of branch line 61A (Sahāranpur to Dehra Dūn) -(concld.)							
37	53 F	Stone B.M. at Mohabāwãla	37-1	1905-07	+ $1194 \cdot 121$	+ $1104 \cdot 225$	+0.104
39	"	O on plinth level ...	39.6	"	+ 1057•156	+ 1057.263	$+0 \cdot 107$
40	"	Colonel Everest's upper mark of Dehra Dūn BaseLine E. end T.S.	$39 \cdot 6$	"	+ 1056.661	+ $1056 \cdot 741$	+0.080
43	"	$\left\lvert\, \begin{aligned} & \text { G.'T.S. } \\ & \text { O.M } \end{aligned}\right.$	$39 \cdot 4$	"	+ 1084.704	+ 109.6.012	+0.118
1	53 J	on culvert ...	$40 \cdot 0$,	+ 1100861	+ 1100.775	$+0 \cdot 114$
110	"	B. OM. on culvert ...	$40 \cdot 6$	"	+ 1134.416	+ $1134 \cdot 576$	+0.130
2	\cdots	Q.'T.S. on bridge	41.0	"	+ 1140.097	+ $1140 \cdot 240$	+0.143
109	,	$\hat{\uparrow}$ on boundary pillar ...	41-8	"	+ 1193.496	+ $1103 \cdot 643$	+ 0.147
107	\cdots	1. Wheel guard rail	$42 \cdot 4$	"	+ $1232 \cdot 834$	+ $1232 \cdot 887$	$+0 \cdot 153$
5	"	G.T.S. in tahsil, Dehra Dūn	43.1	-	+ $1280 \cdot 122$	+ $1280 \cdot 237$	+0.115
106		B. M.					$+0 \cdot 159$
106	"	B. OM on sluices G.T.S.	$43 \cdot 5$	"	+ 1307.48t	+1307.643 +1329.019	
6	-	(Bench-mark at Dehra Dūn 1904	$44 \cdot 0$	"	+ $1329 \cdot 758$	+ $1329 \cdot 019$	$\div 0 \cdot 163$
12	"	Iron Plug in D.G.B'S office, Debra Dūn	44.0	"	+ 1326.754	$+1320.903$	$+0.149$
8	..	Cole’s Satellite Station, Dehra Dün 1869	4.4. 1	"	+ 133.4.074	+ $1385 \cdot 139$	$+0 \cdot 165$
9		Standart B.M. Dehra Dion	$44 \cdot 2$		+ $1334 \cdot 110$	+ 1831.259	$+0 \cdot 149$
10	,	\bigcirc	1.4 .2	,	$+1332 \cdot 523$	+ 19.3 -670	$+0 \cdot 147$
11	-	Stamiard R. M. at Dalanwïla. Dehrn Dün	$44 \cdot 5$	"	+ 1389.388	+ 1329.515	+0.153

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Beucl-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heighte, above (+) or below (-) the atarting bench-mark			Ditrerence (revigion -origi- nel). The sign denotes that the height was greater and the sign-, lease in 1927.28 than when originally levelled			
No.	Degree sheet	Description		\|c	c	c	che Date of $\begin{gathered}\text { original } \\ \text { levelling }\end{gathered}$	From publighed heights	From revision 1927.28 (unadjust- ed)	
			miles		feet	feet	feet			
Part of Line 101 A (Sukkur to Bündhi)-(contd.)										
257	40 A	G.T.S. © on platform B.M. G.1.S.	$3 \cdot 3$	1821-23	$-29 \cdot 276$	-29.287	-0.011			
43	"	$\begin{aligned} & \mathrm{O} \\ & \text { B.M. } \end{aligned}$	$4 \cdot 9$	1904.06	-54.789	-54.834	-0.045			
41	"		$8 \cdot 9$	"	-64.106	-64.172	-0.066			
40	"	G.T.S. " masonry pillar ...	10.8	"	-63.831	$-64 \cdot 125$	-0.294			
36	"	O $" \quad " \quad$ " $\quad .$. B.M. G.T.S.	14.9	"	-63.896	-64.198	-0.302			
34	"	$\begin{aligned} & \text { O } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	19.0	"	$-70 \cdot 468$	-70.534	-0.066			
30	"	$\begin{aligned} & \begin{array}{l} \text { O.1. } \\ \text { B.M. } \\ \text { G.T.S. } \end{array} \end{aligned}$	$23 \cdot 1$	"	$-78 \cdot 185$	$-78 \cdot 239$	-0.054			
29	"	$\begin{aligned} & \text { O. "masonry pillar... } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	$24 \cdot 9$	"	-74.996	$-75 \cdot 172$	$-0 \cdot 176$			
28	"	B.M. G.TS	$26 \cdot 9$	"	-76.076	$-76 \cdot 171$	-0.095			
28	$"$	$\text { C.M. ", colvert No. } 113$	$33 \cdot 8$	"	$-83 \cdot 440$	-83.520	-0.080			
22	'	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. } \end{aligned}$	$35 \cdot 0$	"	-80.142	$-80 \cdot 172$	-0.030			
14	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { B.M. ", culvert No. } 97 \\ & \text { B. } \end{aligned}$	43:8	"	$-92 \cdot 527$	$-92 \cdot 716$	-0.189			
10	"	$\begin{array}{lllll} \text { G.T.S. } & & & \\ \text { B.M. } & " & " & " & 82 \end{array}$	47.7	"	$-95 \cdot 280$	$-95 \cdot 449$	$-0 \cdot 169$			
9	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { O. "bridge No. } \quad 75 \\ & \text { B.M. } \end{aligned}$	49.6	"	$-95 \cdot 788$	$-95 \cdot 907$	-0. 209			
8	"	$\begin{array}{llll} \text { G.T.B. } \\ \text { O.M. } & \text { " culvert } & & \\ \text { B.M } & & \end{array}$	51.8	"	$-90 \cdot 260$	$-99 \cdot 404$	-0.144			

TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Part of Line 52 C (Shähpur to Mahräbpur)-(contd.)

2	40 F	G.T.S. \bigcirc B.M.	$18 \cdot 6$	1921-22	+13.100	+13.146	+0.046
1	"	G.T.S. B. \square. on H.F.L. stone	$18 \cdot 8$	"	$+12 \cdot 510$	+12.551	+0.041
116	40 B	$\begin{aligned} & \text { G.T.S. } \\ & \square \text { on verandah } \\ & \text { B.M. } \end{aligned}$	$23 \cdot 2$	"	+ 4.288	+ $4 \cdot 320$	$+0032$
113	"	\bigcirc on culvert $\quad .$.	$30 \cdot 7$	"	$+7.017$	$+7.026$	+0.009

Parts of Lines 52C (Shaihpur to Mahrōlupur), 52B (Danr to Lundo) and 101A (Sukkur to Hyleräbäd)

113	40 B	O on culvert	$0 \cdot 0$	1921-22	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
110	"	B. OM. on culvert	10.2	"	+ $3 \cdot 525$	+ $3 \cdot 477$	-0.048
101	"	H.OM. , ,	$32 \cdot 8$,	+18.182	$+18.134$	-0.048
$\begin{aligned} & 207 \\ & (5) \end{aligned}$	"	$\left\lvert\, \begin{array}{lll} \text { H.T.S.S. } \\ \text { B.M. } \end{array}\right., \quad \text {, No. } 180$	$47 \cdot 2$	"	+17.001	$+10 \cdot 825$	$-0 \cdot 176$
94	\cdots		$79 \cdot 4$	"	+17.716	+17.587	$-0 \cdot 129$
93	"	$\begin{gathered} \text { G.T.S. } \\ \text { O } \\ \text { B M. } \end{gathered} \text { pillar }$	$79 \cdot 5$	"	+ $17 \cdot 598$	+17.464	-0.134.
95	"	'lop of iron pipe G.I.S.	$85 \cdot 5$	"	$+17 \cdot 717$	$+17 \cdot 509$	-0.208
96	"	O on stone block B. M.	89.3	"	$+16 \cdot 072$	$+16 \cdot 712$	-0.2fio
97	"	Top of iron pipe G.T.S.	309	"	+17.103	$+10 \cdot 816$	$-0 \cdot 2 ¢ 7$
98	"	O on verandah B. M.	$96 \cdot 4$	"	+13.259	$+18.891$	-0.365
100	"	$\begin{gathered} 90.54 \\ 0 \end{gathered}$	96-6	"	+19.79.4	$+19 \cdot 454$	-0.340
98	"	B. M. on britgo $^{\text {a }}$	$96 \cdot 9$	"	$+23 \cdot 244$	+ 21.884	$-0 \cdot 360$

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Dench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric height, above (+) or below (-) the starting benoh-mary			
			miles		feet	feet	feet
Parts of Lines 101 A (Sukkur to Hyderäbäd), 52 L(Daur to Bāndhi) and $52 C$ (Shähpur to Mahrābpur)							
$\left[\begin{array}{l} 182 \\ (49) \end{array}\right.$	40 B	$\begin{aligned} & \text { G.T.S. } \\ & \text { O on masonry pillar ... } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	0.0	1927-28	$0 \cdot 000$	0.000	$0 \cdot 000$
185	"	$\begin{aligned} & \text { O at Bhiria R.S. ... } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	$8 \cdot 5$	"	$+0.583$	+ 0.535	-0.048
187	"	$\begin{aligned} & \text { C at Karya minor ... } \\ & \text { G.T.S. } \end{aligned}$	9.9	"	-0.765	- 0.803	-0.038
186	"	151 O 84 B.M. at bridge	10•1	"	+6.102	$+6 \cdot 058$	-0.044
$\begin{aligned} & 57^{\circ} \\ & 58^{\circ} \end{aligned}$	"	B. OM. at onthouses Phal B.OM. at S. D. O's office	29.4	1925-26	- $7 \cdot 509$	-7.675	-0.166 -0.170
		G.T.s. Phal ...	29.5	"	- 7 363	-7.533	$-0 \cdot 170$
56*	"	O at B. bangalow ... B.M. L.B.	$29 \cdot 6$	"	-6.954	- $7 \cdot 118$	$-0 \cdot 164$
55*	"	\qquad in compound of B . B	$29 \cdot 7$	"	- 8.393	-8.558	-0.165
55 A	"	on Dr. Sammer's 27 M G.T.S.	$30 \cdot 1$	"	$-8 \cdot 117$	- $8 \cdot 289$	-0.172
144	"	$\begin{aligned} & \text { O.S. on calvert } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	$35 \cdot 3$	1921-22	$-13 \cdot 642$	-13.745	$-0 \cdot 103$
148	"	$\overbrace{\text { B. } \mathrm{M} \text {, }} \text { at bridge }$	$40 \cdot 4$	"	- 5.390	-5.474	-0.084
147	.	\square at P. W. D., I. B. ...	$41 \cdot 9$	"	- 6.382	- 6.435	-0.163
148	"	G.T.S. B.OM. at P.W.D's office ... G.TS	$41 \cdot 9$	"	-6.299	-6 378	-0.079
149	"	$\begin{array}{cc}\text { C.I.S. } & \text { at mukhtiārkär's } \\ \text { office } & \\ \text { B. } & \\ \text { O. }\end{array}$	42•2	"	- 6.917	-6.995	-0.078
152		G.T S.OB.M. nt Tharushäb	$71 \cdot 3$		$1-4.584$	-4.649	-0.065

* Serial nambers in Line 52L (Danr to Bāndhi).

TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric lheights, above (+) or below (-) the starting bench-mark			Difference (revision -origi. nal). The sign + denotes that the height was greater and the gign-, less in 1027.28 than when originally levelled
No.	Degree sheet	Description		Date of original levelling	From published heights	From revioion 1927-28 (undjust- ed)	
			miles		feet	feet	feet
Parts of Lines $52 . L$ (Daur to Bāndhi) and 101 A (Sukkur to Hyderābād)							
42*	40 B	$\begin{aligned} & \text { L.B. } \\ & \text { В at Moro } \\ & \text { B. } \uparrow \text { M. } \end{aligned}$	$0 \cdot 0$	1925-26	$0 \cdot 000$	$0 \cdot 000$	0.000
47*	"	G.T.S. BM. on stone pillar ...	$1 \cdot 5$	"	$+2.182$	$+2 \cdot 206$	+0.024
$\left\|\begin{array}{l} 208 \dagger \\ (35) \end{array}\right\|$	"	G.T.S. O at culvert No. 206... B.M.	$41 \cdot 4$	1924-25	-1.737	- 1.891	$-0 \cdot 154$
34	"	$\begin{aligned} & \text { O } \\ & \text { B.M. } \\ & \text { G.T.S. } \end{aligned}$	43•3	1927-28	- $4 \cdot 361$	- 4.503	$-0 \cdot 142$
201	"	O at verandah B.M.	$43 \cdot 6$	"	$-2 \cdot 153$	- $2 \cdot 297$	-0.144
202	"	B.OM. on well G.T.S.	$43 \cdot 8$	"	-0.325	-0.474	-0.149
203	"	$\begin{gathered} \text { B.M. at P. W. D., I. B., } \\ \square \\ \text { B.D. } 1924 \end{gathered}$	$4.3 \cdot 8$	"	-4.577	- 4.718	$-0 \cdot 141$
$212 \dagger$	"	$\begin{aligned} & \text { G.T.S. } \\ & \text { O nt Bāndhi R.S. ... } \\ & \text { B.M. } \end{aligned}$	4.4.0	1924-25	+ 0.329	+ $0 \cdot 184$	-0.145
Parts of Lines 101 A (Sukkur to Hyderàbād) and 52 L (Daur to Būudhi)							
$216+$	40 H	0 B.M. at bridge No. 203...	$0 \cdot 0$	1924-25	$0 \cdot 000$	$0 \cdot 000$	0.000
20*	\cdots	B. OM. at M.S. $\left.\begin{array}{c}\text { Danlatpur } \\ \text { Thul hukan } 4\end{array}\right\}$	$70 \cdot 4$		- 1.028	-0.939	+0.089
11*	"	$\begin{aligned} & \text { G.T.S. } \\ & \bigcirc \\ & \text { B.M. } \\ & 126 \cdot 14 \end{aligned}$	$77 \cdot 7$	"	$+10 \cdot 767$	$+10 \cdot 886$	+ $0 \cdot 119$
12*	"	B. OM. at bridge	$77 \cdot 7$	'	$+10 \cdot 622$	$+10 \cdot 741$	+0.119
13*	"		$77 \cdot 8$	"	+ 0.991	$+0.399$	+0.118

[^8]TABLE 3.-Revision levelling-(contd.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric lueights, ubove (+) or below (-) the starting bench-mark			
			miles		feet	feet	feet
Parts of Lines 101 A (Sukkur to Hyderābād) and $52 L$ (Daur to Bāndhi) -(contd.)							
14*	40 B $"$		77.8 $77 \cdot 9$	1925-26	$+\quad 1.214$ $+\quad 0.573$	+ + +	$\left(\begin{array}{l}+0 \cdot 116 \\ +0 \cdot 118\end{array}\right.$
Part of Line 52 C (Shāhpur to Mahrābpur)							
217 209	$40 \mathrm{~A}$	G.T.S.OB.M. at l.B. Mah- ribpenr B.OM. on bridge	$0 \cdot 0$ 21.0	1921-22	$0 \cdot 000$ $+\quad 9 \cdot 271$	0.000 $+\quad 9.482$	0.000 +0.211
208	1)	$\begin{aligned} & 165 \cdot 76 \\ & \text { B. } \quad \mathrm{M} ., \\ & \uparrow \\ & \text { G. } 7 . S . \end{aligned}$	$23 \cdot 4$	"	+15.970	+16.198	+0.228
2051	"	$\begin{gathered} \text { G.T.S. } \\ \text { ○. } \\ \text { B.M. } \end{gathered} \quad " \quad \ldots$	$27 \cdot 1$	"	+13.084	+13.245	+0.161
204	"	G.T.S. \bigcirc B.M. at school ...	$29 \cdot 3$	"	+ 2.804	$+3.030$	+0.226
207	"	$\begin{aligned} & \text { B.OM, on culvert } \\ & \text { G.'T.S. } \end{aligned}$	$29 \cdot 6$	"	+ 5.560	+ 5.807	+0.247
203	$"$	$\left\{\begin{array}{l}\text { O at I. B. Kandiniro ... } \\ \text { B.M. } \\ \text { G.T.S. }\end{array}\right.$	$39 \cdot 5$	"	$+1.594$	$+1.719$	$+0.125$
2041	י	$\begin{aligned} & \text { O at mukhtiārkūr's } \\ & \text { B.M. office Kandiāo } \end{aligned}$	39•7	"	- 0.536	- 0.400	+0.136
$\bigcirc 01$	"	Top of iron pipe (7.1's.	$45 \cdot 7$	"	- 9•345	- 9.178	+ $0 \cdot 167$
179	40 B	$\begin{aligned} & \text { G.'I'.S. } \\ & \mathrm{O} \text { at Kandiāro Rd. R.S } \\ & \text { BM. } \\ & \text { G.T.S. } \end{aligned}$	$58 \cdot 2$	1924-25	$+7 \cdot 053$	+ 7.183	$\div 0 \cdot 130$
177	"		58.8	"	$+0.265$	$+0.401$	$+0.136$
178	'	G.T.S. B. M A. D. 1924	58.9	"	- 0.178	- 0.044	+0.134

[^9]
TABLE 3.-Revision levelling-(contd.).

Discrepancies between the old and new heights of bench-marks.

TABLE 3.-Revision levelling - (concld.).
Discrepancies between the old and new heights of bench-marks.

Bench-marks of the original levelling that were connected during the revisionary operations				Difference between orthometric heights, above (+) or below (-) the starting bench-mark			
			miles		feet	feet	feet
Part of Line 52 A (Ruk to Sehwän)-(contd.)							
	35 M	G.T.S. ${ }_{\text {O }}$ O on culvert No. $116 .$.	$53 \cdot 2$	1921-22	+ $14 \cdot 057$	+13.927	-0.130
118	"	$\begin{gathered} \mathrm{O} \\ \mathrm{B.M.} \end{gathered} \text { " bridge " } 124 \ldots$	$54 \cdot 2$	"	+11.446	+11.336	-0.110
58	"	O at I.B. Mehar ...	$58 \cdot 7$	1920-21	$+0.965$	+ 0.807	-0.158

TABLE: 4.-List of triangulation stations connected by spirit-levelling, season 1927-28.

TABLE 5.-Results of comparison of staves with standard steel tape No. 3, Lines 55 P\& 136, season 1927-28.

Place of comparison	Date	Length of No.	taff-10 feet f staff	Remarks
		20 A	20 B	
		feet	feet	
Jabboāna	23-10-27	- 0.0012	- 0.0003	Clear
" $\quad \cdots$	$\begin{aligned} & 1-11.27 \\ & 1.11 .27 \end{aligned}$	-0.0012	-0.0005 $-\quad 0.0004$	"
Thatta Mãhla ...	1.11 .27 $9.11-27$	- 0.0011	- 0.0004	Light scattered clouds and
				high wind
Sbāh Jewāna R.S. ...	17-11.27	- $0 \cdot 0020$	- $0 \cdot 0012$	Clear
Sillanwāli ...	24.11.27	- 0.0035	- 0.0026	"
Hundewali	1-12-27	- 0.0028	- 0.0022	
Sargodha -..	10-12.27	- 0.0022	- 0.0017	Scattered clouds
Bhalwal	20-12-27	- 0.0013	- 0.0005	
Chak Raib	30-12-27	- 0.0020	- 0.0012	Cloudy \& drizzling
Chilliñowāla	10.1.28	- 0.0007	+ 0.0002	Very high wind
Luila Mūsa	18-1-28	- 00017	- 0.0005	Cloudy \& drizzling
Gujrāt $\quad .$.	26-1.28	-0.0009	$+0.0001$	Scattered clonds
Pbullarwān ...	7-2-28	$+0.0002$	-0.000\%	" \quad

TABLE 5.-Results of comparison of staves with standard steel tape No. 7, Lines 140, 106, 153, \& 121, season 1927-28-(contd.).

Place of comparison	Date	Length of staff-10 feet No. of staff		Remarks
		01	Li 1	
		feet	feet	
Háthras	11-10-27	+ 0.0008	- 0.0006	Clear
Muttra	19-10-177	- 0.0012	- 0.0028	,
Semri	$26 \cdot 10-27$ $3.11-27$	-0.0011 -0.0027	-0.0026 -0.0035	
Palwal	$3.11-27$ $11-11-27$	-0.0027 -0.0025	$\begin{array}{r}\text { - } 0 \cdot 0035 \\ -\quad 0.0034 \\ \hline\end{array}$	$\underset{\text { Cloudy }}{\text { Clear }}$
Jnmas bridge	20-11-27	- 0.0030	- 0.0037	.
Sikrikalãa ...	28-11-27	- 0.0031	- 0.0039	.,
Meernt -..	5-12-27	- 0.0028	- 0.0046	"
Matra Masas	9-12-27	- 0.0022	- 0.0035	"
Mithras Balisore	+17-12.27	-0.0019 -0.0019	-0.0030 -0.0027	,
	10.1-23	- 0.0010	-0.0027 -0.0032	",
Rampura -...	19.1-28	- 0.0012	- 0.0026	.
Debria	27-1-28	- 0.001t	- 0.0031	.
Tamnitala	5-2.28 $15-2.28$	-0.0005 -0.0015	-0.0018 -0.0031	",
Ramaniotala	- $24.2-28$	- 0.0009	--0.0031	"
Churpar	3-3-28	- 0.0012	- 0.0035	
Kharakpar	10-3-24	- 0.0083	- 0.0036	
Balasore ...	17-3-28 $22-3-29$	$-\quad 0.0026$ -0.0025	($\begin{aligned} & 0.0014 \\ & -\quad 0.0043\end{aligned}$	Light ${ }^{\text {chends }}$

TABLE 5.-Results of comparison of staves with standard steel tape No. 7, Line 61 A, season 1927-28-(contd.).

Place of comparison	Date	$\frac{\text { Length of staff-10 feet }}{\text { No. of staff }}$		Remarks
		015A	015 B	
		feet	feet	
Sahāranpur	31-3-28	0.0000	+ 0.0003	Clear
"	2-4-28	+ 0.0008	+ 0.0010	Hazy and cool breeze
Behārigarh	64-28	+ 0.0010	+0.0014 +0.0009	Clear
Moban	10-4-28	+0.0006 +0.0006	+0.0009 $+\quad 0.0009$ +0.0006	Clear and"cool breeze
"	14-4-28	+0.0006 +0.0002	$+0 \cdot 0009$ +0.0006	Clear and cool breeze
Asärori	24-4-28	- 0.0001	$+0.0003$	Clear
Dehra Dūn	25-4-28	- 0.0008	$+0.0003$	"

TABLE 5.-Results of comparison of staves with standard steel tape No. 4, Lines 61A, 139, 137, and 104, season 1927-28-(contd.).

Place of comparison	Date	Length of staff-10 feet No. of staff		Remarks
		02	05	
		feet	feet	
Dehra Dūn	6.10-27	$+0.0030$	+ 0.0002	Light clouds
-	11.10-27	$+0.0036$	$+0.0006$	
Moban Pass	17-10-27	+ 0.0040	$+0.0007$,
Amānatgarh	23-10-27	$+0.0033$	+ $0 \cdot 0004$	"
Sahāranpur	31-10-27	$+0.0038$	+ 0.0009	.,
	5-11.27	+0.0032	+ $0 \cdot 0007$	",
Jagãdhri Brahman Mazra	15-11.27	+0.0028	+ 0.0005	
Ambāla City	21-11-27 $30-11-27$	+0.0028 +0.002 +0.0021	+0.0007 +0.0004 +0.0000	Clear and high breeze
Sãdhugarh	7-11-27	$+0.0022$	0.0000	", ",
Bahn Mazra	15-12-27	+ 0.0016	-0.0004	Cloudy
Ludhiaña	23-12.27	$+0.0003$	+ $0 \cdot 0001$	Clear
Bhāj (Cutch)	8-1.28	$+0.0028$	$+0.0005$	
Rntonil (,)	15-1-28	+ $0 \cdot 0022$	- 0.0004	Clear and high breeze
Mamuīa	23-1-28	$+0.0016$	- 0.0010	" " "
Nakhtarãna Motii (Cutch) ...	25-1-28	+ $0 \cdot 0013$	- 0.0001	Clear
Vigori (Cutch) ...	31-1-28	- 0.0003	- 0.0005	Clear and cool brecze
Mătänomädh (Cutch)	4-2-28	-0.0002 -0.0005	-0.0013	clear
Lakhpat (Cutch)	$11-2.28$ 23-2.28	-0.0005 -0.0003	- 0.0020	Clear
Ali Minhammad Jāti Mirhi (Sind)	1. 3.28	0.0000	- 0.0022	Clear and high breeze
Jäti Khalifn	8. 3-28	- $0 \cdot 0002$	- $0 \cdot 0020$	Clear
Khalifr Sujuwal	16.3-28	- 0.0009	- 0.0026	-
Sujaval Domania	24-3-28	$+0 \cdot 0005$	- 0.0019	
Domania	1-4.28	- 0.0002	- $0 \cdot 0020$	
Tatta $\quad \cdots$	万. 4 -28	- 0.0006	- $0 \cdot 0021$	Clcar and high breeze
Saidpur Ferry Ghät	14-4.28	$+0.0003$	- 0.0018	" ", ", wind
T'anka-ki-miñ. ...	18-4-28	+ 0.0004	- 0.0011	. ", " hreeze

TABLE 5.-Results of comparison of staves with standard
steel tape Nos. $2 \& 6$, Line 101 A and Blocks $M^{\prime}, H^{\prime}, L^{\prime}$, and K^{\prime},
season 1927-28-(contd.).

Place of comparison		Date	Length of staff-10 feet				Remarks	
		No. of staff						
		08A	U8B	09A	09B			
				feet	feet	feet	feet	Clear$" "$Clear and coolbreeze
	Snkkur		4-11-27	+0.0022	+0.0021			
	Khairpur Mirs	13-11-27	+0.0025	$+0 \cdot 0025$				
	Gambat -..	26-11-27	+0.0019	+0.0017				
	Mahrābpur ...	3-12-27	$+0.0011$	$+0 \cdot 0010$				
	Pad Idan ...	12-12-27	$\left\|\begin{array}{\|l\|} +0 \cdot 0004 \\ +0 \cdot 0004 \end{array}\right\|$	$+0 \cdot 0004$$+0 \cdot 0009$	Cléar "			
	Danr ...	18-12-27						
	Hyderābōd ...	13-11-27			+0.0024	+0.0025	"	
	Alahdino Sand	21.11-27			+0.0021	$+0.0014$,	
	'Tando Adam...	30-11-27			+0.0014	+0.0005	,	
	Lando ...	8-12-27			+0.0014	-0.0007	,	
	$\begin{array}{ll}\text { Bucheri } \\ \text { Daur } & \text {... } \\ \end{array}$	$17-12-27$ $20-12-27$			+0.0008 +0.0013	-0.0013 0.0000		
	Daur ...	20-12-27			+0.0013	$0 \cdot 0000$	Clear and cool breeze	
	¢ Chotianti ...	25.12-37	+0.0003	$+0.0007$	+0.0002	-0.0004	Clear	
	Rela-ki-bãt ...	7-1-28	$+0 \cdot 0007$	$+0.0010$	$+0 \cdot 0007$	+0.0002	Clear and cool breeze	
	Sānghar ...	18-1-28	-0.0005	$-0 \cdot 0003$	-0.0003	-0.0009	" "	
	mad Magsi ...	2-2-28	-0.0012	-0.0002	-0.0007	-0.0015		
	\| Kharlro ...	12-2-28	-0.0019	-0.0010	-0.0018	-0.0029	Scattered clouds	
		26-2-28	-0.0027	-0.0014	-0.0017	-0.0034	Clear	
	(Naivàb Shăh ...	13-3-28	-0.0033	-0.0020	-0.0027	-0.0040	Cloudy	

TABLE 5.-Results of comparison of staves with standard steel

tape No 10, Blocks $Y, Z, C^{\prime}, D^{\prime}, G^{\prime}, H^{\prime}$ and F^{\prime},
season 1927-28-(contd.).

Place of comparison	Date	Length of staff - 10 feet				Remarks
		No. of staff				
		010 A	010 B	014 A	014 B	
		feet	feet	feet		
Mabräbpur	4-11-27	+0.0013	+0.0017	+0.0003	-0.0009	Clear
Mabarka	11-11-27	-0.0002	$+0.0002$	-0.0015	-0.0004	Clear and cool breeze
Chihu	18-11-27	-0.0006	-0.0006	-0.0016	-0.0017	
Gurmukh Singh	26-11-27	-0.0004	-0.0006	-0.0019	-0.0020	"
Rajokirio	4-12-27	-0.0011	-0.0015	-0.0022	-0.0016	"
Naushaliro	${ }^{13-12-27}$	-0.0019 -0.0027	-0.0024 -0.0022	-0.0036 -0.0038	-0.0025 -0.0032	"
Moro Sathri	20-12-27	-0.0027	-0.0022	-0.0038	-0.0032	"
Satbri Sherkhān	28-12.27	-0.0023 -0.0016	- $\begin{aligned} & -1.0024 \\ & -0.0020\end{aligned}$	-0.0031 -0.0031	-0.0031 -0.0018	" \quad "
Sabkui	12-1-28	-0.0020	-0.0021	-0.0031	-0.0025	Light scattered
						clouds
Amuriji	20-1-28	-0.0023	-0.0027	-0.0026	-0.0025	Light scattered clouds \& cool breeze
Zardari	27-1-28	-0.0034	-0.0030	-0.0035	-0.0034	Clear \& strong breeze
Fazal Lakho Jo.goth	4- 2.28	-0.0041	-0.0034	-0.0040	-0.0035	Clear \& breeze
Jiwan Khãn Jo-goth	11-2-28	-0.0042	-0.0036	-0.0039	-0.0030	Light scattered clouds
Imāmmddin Jo-goth	18-2.28	-0.0036	-0.0042	-0.0036	-0.0032	Scattered clouds \& cool broezc
(Dãl) D. B.	25-2-28	-0.0048	-0.0040	-0.0016	-0.0032	Clear
Lashari	5-3-28	-0.0072	-0.0058	-0.0058	-0.0048	Dusty and cool
Slailitad Zardan	12.3-28	-0.0065	-0.0047	-0.0051	-0.0035	Clondy \& breeze
Kızi Alımad	16-3-28	-0.0065	-0.0054	-0.0056	-0.0037	Clear and cool breeze

TABLE 5.-Results of comparison of staves with standard steel tape
No. 5, Blocks V, $, T, T, Y, C,{ }^{\prime},^{\prime},^{\prime}$ and X, season 1927-28-(concld.).

Place of comparison	Date	Length of staff-10 feet				Remarks
		No. of staff.				
		012A	012 B	013A	013B	
		feet	feet	feet	feet	
Mahräbpar	4-11-27	$+0 \cdot 0020$	$+0 \cdot 0017$	$+0.0018$	+0.0019	Clear
Gul Sbāh	14-11-27	$+0.0007$	$+0 \cdot 0006$	$+0.0006$	+0.0006	"
Kandiāro ...	23-11.27	$+0.0011$	$+0.0010$	+0.0014	+0. 0009	"
Mayo Sial	1-12-27	+0.0011	$+0.0007$	$+0.0007$	$+0.0007$	"
Bahlani	9-12-27	-0.0015	-0.0018	-0.0011	-0.0013	
Mahrābpar ...	13-12-27	+0.0006	-0.0003	-0.0005	-0.0004	Light scattered clouds
Radhan ...	21-12-27	$+0.0007$	-0.0007	-0.0006	-0.0004	Clear
Ghalām Mohd...	29-12-27	$+0 \cdot 0005$	$+0.0001$	$+0.0002$	$+0.0002$	"
Kibātia ...	7-1-28	-0.0025	-0.0003	-0.0002	-0.0002	.
Sita Road	15-1-28	-0.0002	-0.0005	-0.0001	-0.0003	
Dillu	23-1-28	-0.0004	-0.0008	-0.0004	-0.0002	Clear \& cool breeze
Dädu	13-3-28	-0.0020	-0.0037	-0.0040	-0.0039	Light scattered clouds and cool breeze
Radhan	28-3-28	-0.0018	-0.0032	-0.0032	-0.0027	Clear and wind
Dillu	23-1-28	-0.0003	-0.0008	-0.0004	-0.0002	Clear \& cool breeze
Khera	26-1-28	-0.0008	-0.0011	-0.0013	-0.0013	Light scattered clouds and very cool breeze
Gul	31-1-28	-0.0015	-0.0027	-0.0028	-0.0002	Light scattered clourls and cool breezc
Dādu	8- 2-28	-0.0107	-0.0014	-0.0014	-0.0012	Clear
Ehudābād R.S....	15-2.28	-0.0012	-0.0025	-0.0016	-0.0014	"
Bubak K.S.	23-2-28	-0.0003	-0.0012	-0.0020	-0.0015	"
Sainkar	10-3.28	-0.0018	-0.0032	-0.0030	-0.0024	
Hir Mohrl.	2. 3-28	-0.0018	-0.0030	-0.0029	-0.0026	Light scattered clouds

PUBLICATIONS

OF THE

SURVEY OF INDIA

Obtainable from the Director, Geodetic Branch, Survey of India, Dehra Dūn, U.P.

SYNOPSIS

Part I-Numerical Data

| | | | Page | |
| :--- | :--- | :--- | :--- | ---: | ---: |
| Triangulation Pamphlets | \ldots | \ldots | \ldots | 121 |
| Levelling Pamphlets | \ldots | \ldots | \ldots | $121-125$ |
| Tide-Tables \ldots | \ldots | \ldots | \ldots | 125,126 |

Part II-Geodetic Works of Reference
Everest's Great Arc Books 126
G.T.S. Volumes 126, 130

* Part III-Historical and General Reports

Memoirs 130
$\begin{array}{lc}\text { Annual and } \\ \text { Reports } & S_{p e c i a l}\end{array}\left\{\begin{array}{lllr}\text { General Reports } & \ldots & 130 \\ \text { Map Publication and Ofice Work } & \ldots & 131 \\ \text { Extracts from Narrative Reports } & \ldots & 131 \\ \text { Records of the Survey of India } & \ldots & 132,133 \\ \text { Geodetic Reports } & \ldots & \ldots & 133,134\end{array}\right.$

* Part IV-Catalogues and Instructions

Departmental Orders 134, 135
Catalogues and Lists 135
Tables and Star Charts 135, 136
Old Manuals 136
Survey of India Hand-books 137
Notes and Instructions 157, 138

* Part V-Miscellaneous Papers

Unclassified Papers $\left\{\begin{array}{l}\text { Geography, Exploration, Special Reports, } \\ \text { Geodesy, Projections, MLapping }\end{array}\right.$
Professional Papers 140-142
Departmental Papers $14:$
Professional Forms 112
List of more important contributions by the: oficers of the
Survey of India to various extra-departmental publica-
tions and related articles

[^10]Sterling Prices of Publications.-The prices to be charged for Survey of India publications in sterling equivalents in English money have been worked out under the rules given in letter No. A.401 dated the 17 th January 1924 from the Under Secretary to the Government of India, Department of Industries and Labour, Delhi, to the Secretary to the High Commissioner for India, General Department, 42 Grosvenor Gardens, London, S.W. 1. These sterling prices are subject to fluctuation with the exchange rate and will be revised from time to time. The prices at the current rate of exchange are:-

Price in Indian money		English equivalent	
Rupees	Aunas	Shilling	Pence
0	2	0	3
0	4	0	5
0	8	0	10
0	12	1	3
1	0	1	9
1	2	1	11
1	8	2	6
1	12	3	0
2	0	3	6
2	8	4	6
3	0	5	3
3	8	6	0
4	0	6	9
4	4	7	3
4	8	7	6
5	0	8	3
5	8	9	0
6	0	9	9
6	8	10	6
7	0	11	6
7	8	12	0
8	0	13	6
8	8	14	6
9	0	15	0
9	8	16	0
10	0	16	(
10	¢	17	6
12	0	19	(

Part I.-NUMERICAL DATA

Triangulation Pamphlets-each covering ove square degree, giving descriptions, positions, (latitude and longitude) and heights of triangulated points and other data with chart. The chart shows the plan of triangulation with the position of stations and points. Triangulation data falling in $1 / M$ sheet are printed in a series of sixteen panphlets A to P. In the list pamphlet of every series, a coloured map on scale 1 inch $=16$ miles approximately is given in addition to the chart, to illustrate the topographical features of the area covered by the $1 / M$ sheet. Pamphlets having this map are charged Rs. 1-8 extra.

Index chaits of the published triangulation pamphlets are given at the end.

Price Re. I per pamphlet. Published at Dehra Dūn.

Levelling Pamphlets-

(i) Levelling of Precision-giving heights and descriptions of all Benchmarks, fixed by Levelling of Precision. Each pamphlet embraces an area of $4^{\circ} \times 4^{\circ}$ and the numbering is the same as that of the corresponding sheets of the $1 / \mathrm{M}$ map of India. Each is illustrated by a map of the area. Published at Dehra Dūn.
(a) Levelling of Precision in India and Burma-

Pamphlet			Latitude	Longitude	Pub- lished in	Price
Sheet	Distinctive name of sleet					
34	(Quetta)		28-32	61-68	1916	Rs. 2-0.0)
35	(Karāchi)		24-28	64-68	1911	Rs. 2-0.0
38	(Kābul)		32-36	68-72	1912	Rs. 2-0-0
39	(Multān)		28-32	68-72	1913	Rs. 2-0-0
	Addendum to 39		1916	Ks. 2-0-0
40	(Hyderābād, Sind)		24-28	68-72	1911	Rs. 2.0.0
41	(Răjkot)	.	20-24	68--72	1913	Rs. 2.0.0
43	(Srinlagav)	...	32-36	72-76	1913	Rs. 2-0.0
	Addendum to 43	...			1915	Rs. 2.0.0
44	(Lahore)		28-32	72-76	1926	Rs. 3-0-0
45	(Ajmer)	...	24-28	72-76	1911	Rs. 2.0.0
46	(Baroda)	...	20-2t	72-76	1912	Ks. 2-0.0
47	(Bombay)	\ldots	16-20	72-76	1912	Rs. 2-0-0
	Addendum to 47, Island of Bombay	1915	Re. 1-0.0)
48	(Goa)	\ldots	12-16	72-76	1912	Ks. 2-0-0
49	(Calicut)	...	8-12	72-76	1911	Re. 1-0-0
52	(I,eh)	\ldots	32-36	76-80	1912	Re. 1-0.0
53	(Delhi)	...	28-32	76-80	$\xrightarrow{1920}$	Rs. 3-0-0
54			24-28	76-80	(reprinter $1929)$ 1021	Rs. 2-0-0
	(Agra)	...				

Levelling Pamphlets-(Continued).

	Pamphlet		Latitude	Longitude	Published in	Price
Sheet	Distinctive name of sheet					
55	(Nāgpur)		$2{ }^{2}$	76×80	1912	Rs. 2-0.0
56	(Hyderābād, Decean)		16-20	76-80	1912	Rs. 2-0-0
	Addendum to 56				1919	Re. 1-0.0
57	(Mysore)	\ldots	12-16	76-80	1919	Rs. 2-0.0
58	(Ootacamund)	..	8-12	76-80	1914	Hs. 2-0.0
62	(Mānasarowar)	\ldots	28-32	80-84	1922	Re. 1-()-0
63	(Allahābād)	...	24-28	80-84	1923	Rs: 2-0.0
64	(Raipur)		20-24	80-84	1912	Rs. 2-0.0
65	(Vizagapatam)	\cdots	16-20	80-84	1913	Rs, 2-0-0
66	(Madras)	..	12-16	80-84	1912	Rs. 2-0.0
72	(Kātmāndu)	\ldots	24-28	84-88	1912	Rs. $2.0-0$
	Addendum to 72				1919	Rs. $2-0.0$
73	(Cuttack)		20-24	84-88	1913	Rs. $2 \cdot 0.0$
	Addendum to 73				1920	Rs. 2-0.0
74	(Purī)	\ldots	16-20	84-88	1913	Rs 2-0.0
78	(Darjeeling)	\ldots	24-28	88-92	1923	Rs. 2-0.0
79	(Calcutla)	\cdots	20-24	88-92	1924	Ks. 2-0.0
83	(Dibrugarh)	...	24-28	92-96	1912	Rs. $2 \cdot 0-0$
84	(Akgab)	...	20-24	92-96	1918	Rs. 2-0.0
85	(Prome)		16-20	92-96	1917	Rs. 2-0.0
92	(Bhamo)	\ldots	24-28	96-100	1918	Rs. 2-0.0
93	(Mandalay)	...	20-24	96-100	1917	Ris. 2-0.0
$9 \pm$	(Rallgoon))		16-20	96-100	1916	Rs. 2-0.0
95	(Mergui)		12-16	96-100		

(b) Leveiling of Precision in Mesopotamia-

Deseriptions and heights of bench-marks in Mesopotamia in one pamphlet, publisherl at Dehra Dūn, 1923.

Price lis. 3.
(ii) Levelling of Secondary Precision -

Descriptions and heights of bench-marks by lines generally produced by Gestetner at Dehra Dún.

	Line number	Sitnated in dlegree sheets	$\begin{gathered} \text { Published } \\ \text { in } \end{gathered}$	Price
1	5iA (Ruk tu Snhwān) ...	$35 \mathrm{M} \& \mathrm{~N}$ and 4) A	1028	As. 6
\pm	5P (Danr to Torndo) ...	40 B \& C	"	"
3	52 C (Shahpur to Mahrabpur) ...	$\begin{aligned} & 35 N \text { and } 40 \\ & A, B, C, F \& G \end{aligned}$,	"
4	.)2D ('Tando Alāhŷur to Hyderāhäd)	40 C \& D	",	"

Levelling Pamphlets-(Continued).

	Line number	Situated in degree shcets	P'ublished in	Price
5	52E (Rohri to Jām Sahib)	$40 \mathrm{~A}, \mathrm{~B}$ \& E	1928	As. 6
6	52F (Shāhpur to Mīpur l'urāa)...	$40 \mathrm{~B}, \mathrm{C}$ \& G	"	"
7	$5: \mathrm{G}$ (Lāndhi canal bungalow (39th $\begin{gathered}\text { mile) to Khipro) } \\ \text {.. }\end{gathered}$	40 C \& G	"	"
8	52 H (Khipro to Ghulām Bhurgari)	40 G	"	"
9	52 I (Mīrpur Khās to T'ando Ghulām Alī via Umarkot and Dādāh)	$40 \mathrm{C}, \mathrm{D}, \mathrm{G} \& \mathrm{H}$	"	"
10	52J (Mīrpur Khās to Tando Ghulām Alī via Dīgrī)	40 G	"	"
11	52 K (Dīgrī to Dādāh)	40 G \& H	"	\%
12	70 J (Barākar to Hazāribāgh Road)	$\begin{aligned} & 73 \mathrm{I} \text { and } 72 \mathrm{H} \\ & \& \mathrm{~L} \end{aligned}$	"	As. 12
13	74C (Howrà to Uttarpāra) $7+1$ (Baidyabāti to Sheorāphūli) 74 E (Bāndel Church to Bāndel Rг. Stn.) 74 F (B.M. $251(118) / 79 \mathrm{~A}$ to Pandua Ry. Stn.)	79 A \& B	"	As. 8
14	74G (B. M. 126/73M to Saktigarh Ry. Stu.) 741 (B.M. 116/73M to Burdwān Ky. Stn.) 70L (B.M. $85 / 73 \mathrm{M}$ to Mānkar Ry. Stn.) 70F (B.M. 76/73M to Pānngar			
	Ky. Stn.) 70G(B.M. 58/73M to Durgāpur Ry. Stu.) 70H (B.M. 28/73M to Rānīganj Ry. Stı.) 70 I (B.M. 15/73M to Asansol, Kā̄īpāhari © Churulia) 70M (Khāna Ry. Stn. to Galsi Ry. Stı.)	73 I \& M	"	As. 12
15		79 B	"	lie. 1
16	$\left.\begin{array}{l}\text { 87A (Moulmein to Paan) } \\ 973 \text { (Moulmein to Wekali) } \\ 87(\text { (Babukou to Kawmyatkyi) } \\ \text { S7D) (Nyaungbinzeik to Nat } \\ \text { chaung) }\end{array}\right\}$	94 H \& L aud $95 \mathrm{E} \& \mathrm{I}$	"	As. 12

Levelling Pamphlets-(Continued).

	Line number	Situnted in dogree sheets	$\begin{aligned} & \text { Pablished } \\ & \text { in } \end{aligned}$	Price
17	$\left.\begin{array}{l}\text { 88B (Kyauktaga to Myitkyo) } \\ \text { 88C (Dalanun to Pazunmyaung) } \\ \text { 88D (Pegu to Zenyaungbia) } \\ \text { 88E (Myitkyo to Okpo) } \\ \text { 88F (E. B. N. at R. D. } 25 \text { of the } \\ \text { Yenwe Embankinentto Uaw) } \\ \text { 90A (Nyaungzaye to Kandin) } \\ \text { 90B (Ma-ubin to Bassein) } \\ \text { 90C (Sagamya to Pantanaw) } \\ \text { 90E (Thouze to Rangoon) }\end{array}\right\}$	$\begin{aligned} & 85 \mathrm{~L}, \mathrm{~N}, \mathrm{O} \& \mathrm{P} \\ & \text { and } 94 \mathrm{~B}, \mathrm{C} \& \mathrm{D} \end{aligned}$	1928	Rs. 2
13	$\left.\begin{array}{l}\text { 89. (Kyaukse to Minzu) } \\ \text { 89B (Ywakainggyit to Amarapura) } \\ \text { 89C (Kyaukse to Mandalay) } \\ \text { S9D (Tangôn to Shwebo) } \\ \text { 89E (Kabo to Myittaw) } \\ \text { 89F (Okshitkan to Paukkan) } \\ \text { 90D (Meiktila to Yewe) }\end{array}\right\}$	93 B \& C. and 84 M, N, O \& H	"	Rs. 1-8
19	29C (Nira to Batgarh) ...	$47 \mathrm{~F} \& \mathrm{~J}$	1929	A8. 6
20	53A (Madad Chändia to Melhar)	35 M	"	"
21	$\overline{\mathrm{j}} \mathrm{B}$ B (Shikārpur to Kambar) ...	40 A	"	"
22	54 C (Wâriâso to Rato-dero) ...	$\begin{gathered} 34 \mathrm{P}, 35 \mathrm{M}, \\ 2010 \end{gathered}$ $39 \mathrm{D} \& 40 \mathrm{~A} .$	"	"
23	551 (Garh Mabārāja to Damāmiáa) 5.5K (Aherbela to Multān)	$39 \mathrm{~N}, 44 \mathrm{~A} \& \mathrm{~B}$	"	"
24	$\left.\begin{array}{l} 50 \mathrm{~L} \text { (Rangpra to Muzaflargarh) } \\ 5 . \mathrm{M} \text { (Muzatfargart to } \\ \text { Maluk) } \end{array}\right\}$	39 N \& 0	"	As. 10
25	$5 \overline{0}$ ((Sujābād to Nabuwāli) ...	390	"	As. 6
26	55 P (Jabboãna to Kot Māldeo) ...	444 A	"	"
27	56 H (Kasūr to Basirpur) ...		"	",
	070) (Lodhrau to Bnliawalpur) ...		"	
29	57 H (Basirpur to Lodhrān) ...	$39 \mathrm{O}, \underset{\& F}{44 \mathrm{~B}, \mathrm{C}}$	"	"
30	j], (Kutabpur to Adamwāhãn) ...	${ }^{39} 0$	"	"
31	Fíl (Dinngart to Khänpur) ...	$39 \mathrm{~L}, \mathrm{O} \& \mathrm{P}$	"	"
32	57 M (Mithira to Khaupur) ...	$39 \mathrm{H} \& \mathrm{~L}$ and 40 E \& I.	"	"
33	.7N (Chachran to Khānbela)	$39 \mathrm{~K}, \mathrm{~L} \& \mathrm{~L}_{\mathrm{O}}$	"	",
36 3.5	$i \notin B$ (Kidderpore to Dublat) TIV (Hartinge Bridge to	79 B	"	"
	(Hakhinesar)	79 B	"	"

Levelling Pamphlets.-(Concluded).

	Line number	Situated in degree sheets	Published in	Price
36	70K (Allāhābād to Barākar) ...	$\begin{aligned} & 63 \mathrm{G}, \mathrm{~K} \& \mathrm{O}, \\ & 72 \mathrm{C}, \mathrm{G}, \mathrm{~K} \& \mathrm{~L} \\ & \text { and } 73 \mathrm{I} \end{aligned}$	"	As. 14
37	70L (Mughal Sarai to Hazāribāgh Road)	$630 \& P$ and $72 \mathrm{D} \& \mathrm{H}$	"	As. 10

Tide-Tables-

Since 1881 Tidal predictions based on the observations of the Survey of India have been published annually by the India Office, London, up till the year 1922. From 1923 onwards the prediction and publication have been undertaken at Dehra Dün by the Stirvey of India. The tables give the times and heights of high- and low-water for every day in the year for 37 ports, and are published early in the previous year. They are published as follows :-
(i) A single volume styled "The Major Series" comprising Tide-'Tables for the following ports:-

Suez, Aden, Bushire, Karāchi, Oltha Point \& Bet Harbour, Bhīv. nagar, Bombay, Cochin, Tuticorin, l'àmban Pass. Colombo, Madras, Vizagrapatam, Dublat, Diamond LIarbour, Kidderpore, Chittarong, Elephant Point and Rangoon. Price Rs. S.
(ii) Combined Pamphlets as below:-
(a) $\left\{\begin{array}{l}\text { Okha Point and Bet Harbour (Mouth of the Gulf of Cutch) } \\ \text { Porbandar } \\ \text { Port Albert Victor (Kiathiāwār) } \\ \text { Bhāvnagar Pricr Rs. 1-S. }\end{array}\right.$
(b) $\left\{\begin{array}{l}\text { Marmagao } \\ \text { Kārwār Price Rs. 1-2. }\end{array}\right.$
(e) $\left\{\begin{array}{l}\text { Dublat (Sāgar Island) } \\ \text { Diamond IKarbour } \\ \text { Kidderpore (Calcuta) }\end{array}\right\} \begin{gathered}\text { Hooghly River } \\ \text { Price Rs. } 1-8\end{gathered}$
(ii) $\left\{\begin{array}{l}\text { Amherst } \\ \text { Monlmein }\end{array}\right\} \begin{gathered}\text { Moulmein River } \\ \text { Frice ILs. } 1-2 .\end{gathered}$
(f) $\begin{aligned} & \text { \{uticorin } \\ & \text { Pāmban Pass (Island of Räness }\end{aligned}$
(f) $\left\{\begin{array}{l}\text { Colombo } \\ \text { Galle } \\ \text { Trincomalee }\end{array}\right\} \begin{gathered}\text { Collon } \\ \text { Prire Rs. I-S }\end{gathered}$
(9) $\left\{\begin{array}{l}\text { Diamond Island } \\ \text { Bassein }\end{array}\right\} \begin{aligned} & \text { Bassein River } \\ & \text { Price Rs. } 1.2\end{aligned}$
(h) $\left\{\begin{array}{l}\text { Elephant, Point } \\ \text { Rangoon }\end{array}\right\} \begin{gathered}\text { Rangoon River } \\ \text { Price Rs. I-2. }\end{gathered}$

Tide-Tables-(Continued).

(iii) Separate pamphlets for each of the following ports:-

Suez, Aden, Basrah, Bushire, Karāchi, Bombny, Beypore, Cochin, Negapatam, Madras, Cocanāda, Vizagapatam. False Point, Chittagong, Akyab, Mergui, and Port Blair. Price of each pamphlet is 4 s .12.

PART II.-GEODETIC WORKS OF REFERENCE

Everest's Great Arc Book.

1. An accomnt of the Measurement of an Are of the Meridian be. tween the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, by Captain George Everest, f.r.s. \&c, East India Company, London, 1830. (Out of print).
2. An account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels of $18^{\circ} 3^{\prime} 15^{\prime \prime}, 24^{\circ} 7^{\prime} 11^{\prime \prime}$ nad $29^{\circ} 30^{\prime} 48^{\prime \prime}$, by Lt.-Colonel G. Everest, r.f.s. and his assistants, East India Company, London, 1847 (Out of print).
3. Engravings to illustrato the above. London, 1847. (Out of print).
G.T.S. Volumes-describing the operations of the Great Trigonometrical Survey.

Vol. I-The Standards of Measure and the Base-Lines, also an Introductory Account of the early operations of the Surver, during the period of 1800-1830. Dehra Dūn, 1870. (Ont of print).
Appendir No. 1. Description of the method of comparing, and the apparatas empluyed.
Ap!cuciix No. 2. Comparizons of the Lengths of the 10 -feet Standards A and B, and determinations of the Difference of their Expansions.
Appendix N_{0}. 3. Comparisons between the 10 -feet $\operatorname{Stand} u r d s I_{B}, I_{S}$ and A. Appendix No. 4. Compnrisons of the 6 -inch Brass Scales of the Compensuted Microscopes.
Appeadis No 5. Determination of the Length of the Inch [7.8] on Cary's 3 -foot Brase Seale.
Appendix No. 6. Compurisons between the 10 -feet Standard Burs s und A for determining the Expansion of \mathbf{A}.
Aplemidix No. 7. Final determination of the Differences in Length between the 10 -feet Standurds I_{B}, I_{S} and A.
dppendix No. 8. On the Thermometers employed with the Standards of Length.
A!pendix No. 9. Determination of the Lengths of the Sub-divisions of the Iuch [a.b].
Appendix No. 10. Report on the Practical Errors of the Measurement of the Cape Comorin Base.
Vol. It--History and Gencral Description of the Reduction of the Principal Triangalation. Dehra Dūn, 1879 . (Out of print). Appendix No. 1. Investigations applying to the Indian Geodesy. Aprondix No 2. The Micrometer Microscope Theodolites: ditectilix No. 3. On Ohservations of Terrestrial Refracion at certain stations situated on the plains of the l'minal).
dppendix So. 4. On the Periodic Errors of Graduated Cireles, \&c.
Appendix No. 5. On certain Modifications of Colonel Everest's system particnlar instruments.

G.T.S. Volumes-(Continued).

Appendix No. 6. On Tidal Observations at Karāchi in 1855.
Appendix No. 7. An alternative Method of obtaining the Formalge in Chapters VIII and XV employed in the Reduction of Triangulation.-Additional Formuls and Demonstrations.
Appendix No. 8. On the Dispersion of Circuit Errors of Triadgulation after the Angles have been corrected for Figaral Conditions.
Appendix No. 9. Corrections to Azimuthal Observations for imperfect Instrumental Adjustments.
Appendix No. 10. Reduction of the N.W. Quadrilateral-the Non-Circuit 'Iriangles and their Final Figural Λ djastments.
Appendix No. 11. The 'Theoretical Errors of the Triangulation of the North- West Quadrilateral.
Appendix No. 12. Simaltaneous lieduction of the NW. Quadrilateral -the Compatations.
Vol. III-North-West Quadrilateral-The Principr] Triangulation, the Base-Line Figures, the Karfchi Longitucinal, N. W. Himālaya, and the Great lndus Series Dehra Dūn 1873. (Out of print).
Vol. 1V-North-West Quadrilnteral-The Frincipal Iriangulation, the Great Arc-Section $24^{\circ} \cdot 30^{\circ}$, Rahūn, Gurhāgarh and Jogi-Tīla Meridional Series, and the Sutlej, Yeries. Dehra 1)ūn, 1876.

Price Rs. 10-8.
Vol. IVA-North-West Quadrinterg-The Principal Triangulation, the
Jodhpur and the Easternisind Meridional Series with the details
of their Reduction and the Final Results. Dehra Dūn, 1886.
Price Rs. 10-8.
Vol. V-Pendulum Operations details of, by Captains J. P. Basevi and
W. J. Heaviside, and of their Reduction. Dehra Dūn and

Calcutta, 1879.
Price Rs. 10.8
Appendix No. 1. Account of the Remensurement of the Length of Kater'. Pendulnm at the Ordnance Surey Office, Southampion.
Appendix No. 5 On the Relation between the Indian Pendulum Operations, and those which hare been conducted elsewheres
Appendix No. 3. On the Theory, $\mathrm{U}_{s e}$ and History of the Convertible Pendulum.
Appendix No. 4. On the Length of the Seconds Pendulum determinable from Materials now existing.
Appendix No. 5. A Biblingraphical List of Works relating to Penduhum Operations in connection with the Problem of the Figure of the Earth.
Vol. VI-South-East Qandrilaternl- The Principal Triangulation and
Simultaneous Reduction of the following Series:-Great AreSection 18° to 24°, the liast Coast, the Calcutta and the Bidar Longitudinal, the Jubbulpore and the Bilaspur Meridionals. Dehra Dūn, 1880. (Out of print.)
Vol. VIr-North-East Qualrilateral-General Description and Simultaneous Reduction. Also details of the following five series:-North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karāra Meridional. Dehra I)ūm, 1882. Price Re. 10-8.

G.T.S. Volumes-(Continued).

Appendix No. 1. The Details of the Separate Reduction of the Budhon Meridional Series, or Series J of the North-East Quadrilateral.
Appendix No. 2. Reduction of the North-East Quadrilateral. The Noncircuit Triangles and their Final Figaral Adjustments.
Appendix No. 3. On the Theoretical Errors generated respectively in Side, Azimath, Latitade and Longitude in a Chain of 'Iriangles.
Appendix No. 4. On the Dispersion of the Residual Errors of a Simnl. tancons Reduction of several Chains of Triangles.
Vol. VIII-Nortll-East Quadrilateral-Details of the following eleven series :-
Gurwāni Meridional, Gora Meridional, Hurilāong Meridional, Chendwār Meridional, North Parasnāth Meridional, North Malüncha Meridional, Calcutta Meridional, East Calcutta Longitudinal, Brahmaputra Meridional, Eastern FrontierSection $23^{\circ}-26^{\circ}$, and Assam Longitudinal. Dehra Dūn, 1882. Price Rs. 10.8 .
Vol. IX-Telegraphic Longitudes-during the years 1875-77 an 1880-81. Dehra Dūn, $1883 . \quad$ Price Rs. 10.8.
(1. Determination of the Geodetic Elements of Longitude Stations.
2. Descriptions of Points ased for Longitude Stations.

Appendices
3. Comparison of Geodetic with Electro-I'elegraphic Arcs of Longitade,
4. Circuit Errors of Observed Arcs of Longitude.
5. Results of Idiometer Observations made during Season 1850-81.

1. Situations of the Longitnde Stations at Bombay, Aden and Suez

Appendices $\left\{\begin{array}{l}\text { 2. Survey Operations at Aden. }\end{array}\right.$
to P'art II. \{3. Resalts of the I'rinngulation.
4. Right Ascensions of Clock Stars.

Vol. X-Telegraphic Longitudes-during the years 1881-82, 1882-83, and 1883-84. Dehra Dūn, 1887. Price Rs. 10-8.

1. Determination of the Geodetic Elements of the Longitude Stations.
2. Descriptions of Stations of the Connecting Triangulation and of those at which the Longitude Observations were taken.
3. On the Errors in $\Delta \mathrm{L}$ cansed by Armatare-time and the Retardation of the Electric Cnirent.
4. On the Rejection of some donbtfal Ares of Season 1881-82.
5. On the probable Canses of the Errors of Arc-measarements, and on the Nature of the Defects in the Transit Instroments which might prodnce them.
Vol. XI-Astronomical Latitndes-during the period 1805-1885. Dehra Dūn, 1890.

Price Rs. 10.8 .
Vol XII-Sonthern Trigon-General Description and Simultaneous Reduction. Also details of the following two series:--Great Are-Section $8^{\circ}-18^{\circ}$, and Bombay Longitudinal. Dehra Dün, 1890.

Price Rs. 10.8.
Vol. XIII-Sonthern Trigon-Details of the following five series:-South Konkan Cosst, Mangalore Meridional, Madras Meridional and Const, South-East Coast, and Madras Longitudinal. Dehra Dūn, 1890.

Price Rs. 10-8.

G.T.S. Volumes-(Continued).

Vol. XIV-South-West Qundrilateral-Details of Principal Triangulation and Simultaneous Reduction of its component series. Dehra Dūn, 1890.

Price Rs. 10-8.
Vol. XV-Telegraphic Longitudes-from 1885 to 1892 and the Revised Results of Volumes IX and X : also the Simultaneous Reduction and Final Results of the whole Operations. Dehra Dūn, 1893.

Price Re. 10-8.
Appendix No. 1. Determination of the Geodetic Elements of the Longitude Stations.
Appendix No. 2. On Retardation. (A numerical mistake was made in this appendix in the conversion of a formula from kilometres to miles: the conclusions drawn cannot therefore be upheld).
Vol. XVI-Tidal Observations- from 1873 to 1892, and the Methods of Reduction. Dehra Dūn, 1901. Price Rs, 10.8.
Vol. XVII-Telegraphic Longitudes-during the years 1894-95-96. The Indo-European Arcs from Karāchi to Greenwich. Dehra Dūn, 1901.

Price Rs. 10-8.
Appendix No. 1. Descriptions of̂ Points used for Longitude Statiods.
Appendix No. 2. The Longitude of Madras.
Vol. XVIII-Astronomical Latitudes-from 1885 to 1905 and the deduced values of Plumb-line Deflections. Dehra Dūn, 1906.

Price Rs. 10-8.
Appendix No. 1. On Deflections of the Plumb-line in India.
Appendix No. 2. Determination of the Geodetic Elements of the Latitude Stutions of Bajumara, Bahak, Lambatach and Kidarkanta.
Appendix No. 3. On the ($\mathrm{N}-\mathrm{S}$) Difference exhibited by Zenith Sector No. 1.
Appendix No. 4. On the Value of the Micrometer of the Zenith Telescope.
Appendix No. 5. On the Azimuth Observations of the Great Trigonometrical Survey of Indin.
Appendix No. 6. A Catalogue of the Publications of the Great Trigono. metrical Survey of India.
appendix No. 7. On the combination weights employed.
Vol. XIX-Levelling of Precision in Indin-from 1858 to 1909. Dehra Dūu, 1910. Price Rs. 10-8.
Appendix No. 1. Experiment to test the changes, due to moisture aud temperatare, in the Length of a levelling stafl.
Appendix No. 2. On the erection of Standard Bench-marks in India during the years 1904 -1910.
Appendix No. 3. Memorandum on the steps takeu in 1905.1910 to enable movements of the Eath's Crust to be detected.
Appendix No. 4. Dynamic and Orthometric corrections to the Himālayau levelling lines and circuit: and a consideration of the order of magnitude of possible refraction elrors.
Appendix No. 6. The pasenge of rivershy the lerelling operations.
Appendix No. 6. The errors of the Trigonometrical values of heighta of stations of the l'rincipal Triangulation.

G.T.S. Volumes-(Concluded).

Appendix No. 7. The effect on the spheroidal correction of employ. ing theoretical iustead of observed values of gravity and a discussion of different formule giving variation of gravity with latitude and height.
Appendix No. 8. On the discrepancy between the Trigonometrical and Spirit-level values of the cifference of height between Dehra Dūn and Mussoorie.

Vol. XIXA-Bench Marks on the Sonthern Lines of Levelling. Delıra Dün, 1910.

Price Rs. 5 .

Fol. XIXB-Bench Marks on the Northern Lines of Levelling. Dehra Dün,

 1910.Price Rs. 5.
PART III.-HISTORICAL AND GENERAL REPORTS.

Memoirs.

1. A Memoir on the Indian Surveys, by C. R. Markham, India Office, London, $1871 . \quad$ Price Rs. 5.
2. A Memoir on the Indian Surveys. (Second Edition), by C.R. Markham, c.B., f.r.s., India Office, London, 1878.

Price Rs. $5-8$.
3. Abstract of the Reports of the Surveys and of other Geographical operations in India, 1869-78, by C. R. Markham and C.E. D. Black, India Office, London. Published annually between 1871 and 1879. (Out of print).
4. A Memoir on the Indian Surveys, 1875-1890, by C. E. D. Black, India Office, London, 1891. Price Rs. 5-8.
"Notes of the Survey of India" are issued monthly. Price As. 2 .

Annual and Special Reports.

Reports of the Revenue Branch-1851-1877. (1851-67 and 1869-70, out of print). Price Rs. 3.
Ditto Topographical Branch-1860-1877. (Out of print),
Ditto Trigonometrical Branch-1861-1878-(1861-71, out of print). Price Rs. 2.
In 1878 the three branches were amalgamated, and from that date onwards annual reports in single volumes for the whole departunent, were published as follows:-

From 1900 onwards the Report was issued anmually in the form of a condenserl statement known as (a) the "Qencral Report" supplemented by fuller reports, which were called (b) "Extracts from Narratire Reports" up to 1909, and since then until 1921 have been styled (c) "Records of the Survey of Inida".

Annual Reports \&cc.-(Continued).

From 1922 the annual reports are published in three separate volumes of octavo size, viz., (a) General Report which is confined to reporting the Survey operatious of the ordinary field parties and detachments with only brief abstracts of geodetic operations, Map Publication and Office work. Published annually Price 1922-25 Rs. 2, from 1925 Re. 1. (d) Map Publication and Office Work report which contains all the Index Maps showing the Progress of Map Publication on all scales, with reports on publication and issue. Published anuually beginning with year 1924. Price Re. 1. (e) Geodetic Report which includes full details of all scientific work of the Geodetic Branch, Survey of India excluding the work of the Dehra Drawing Office and Publication Office. Vol. 1 of this series covers a period of three years 1922-25. Price Rs. 6. Subsequent volumes will be published annually. I'here will be in addition occasional Records volumes.

These fuller reports are available as follows:-

(b) Extracts Volumes.

1000-01-Recent Improvements in Photo-Zincography. G. T'. Triangulation in Upper Burma. Latitude Operations. Experimental Base Measurement with Jäderin Apparatus. Magnetic Survey. Tidal and Levelling. 'lopography in Upper Burma. Calcutta, 1903 (Out of print).

1901-02-G.T. Triangulation in Upper Burma. Latitude Operatious. Magnetic Survey. Tidal and Levelling. Topography in Upper Burma. Topography in Sind. Topography in the Punjab. Calcutta, 1904. (Out of print).

1902-03-Principal Triangulation in Upper Burma. Topography in Upper Burma. 'Iopography in Shan States. Survey of Sāmbhar Lake. Latitude Operations. Tidal and Levelling. Magnetic Survey. Introduction of the Contract System of Payment in 'I'raverse Surveys. 'Traversing with the Subtense Bar. Compilation and Reproduction of Thāna Maps. Calcutta, 1905.

Price Rs. 1-8.
1903-04-Magnetic Survey. Pendulum. Tidal and Levelling. Astronomical Azimuths. Utilization of old Traverse Data for Modern Surveys in the United Provinces. Identification of Snow Peaks in Nepal. I'opographical Surveys in Sind. Notes on town aud Municipal Surveys. Notes on Riverain Surveys in the Punjab. Calcutta, 1906.

Price Rs. 1-8.
1904-05-Magnetic Survey. Pondulum Operations. Tidal and Levelling. 'Iriangulation in Baluchistān. Survey Operations with the Somāliand Field Force. Calcutta, 1907.

Price Rs. 1-8.
1905.06-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Topography in Shan States. Calcutta, $1908 . \quad$ Price Rs. 1-8. 1906.07-Magnetic Survey. Pendulum Operations. Tidal and Levelling. Triangulation in Baluchistān. Astronomical Latitudes. Topography in Shan States. Calcutta, 1009.

Price Rs. 1-8.
1907-08-Magnetic Survey. Tidal and Levelling. Astronomical Latitudes. Pondulum Operations. Topography in Shan Slates. Calcutta, 1910. Price Rs. 1-8.
1908-09-Magnetic Survey. Tidal and Levelling. Pendulum Operations. Triangulation. Calcutta, 1911. Price Rs. 1-S.

Annual Reports \&c.-(Continued).

(c) Records of the Survey of India.

Vol. I-1009-10 -'Topographical Survey. Triangulation. Tidal and Level. ling Operations. Geodetic Survey (Astronomical latitudes and pendulum observations). Magnetic Survey. Calculta, 1912. Price Rs. 4.
Vol. II-1910-11-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Surrey. Calcutta, 1912.
Vol. III-1911-12-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey. Calcutta, 1913.

Price Re. 4.
Vol. IV-1911-13-Explorations on the North-East Frontier-North Burna, Mishmi, Abor and Mīri Surveys. Calcutta, 1914. Price Rs. 4.
Vol. V--1912-13-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey. Note on the relationship of the Himalayas to the Indo-Gangetic Plain. Calcutta, 1914.

Price Rs. 4.
Vol. VI-1912-13-Link connecting the Triangulations of India and Russia. Dehra Dūn, 1914.

Price Rs. 4.
Vol. VII-1913-14-Topographical Survey. Triangulation. Tidal and Levelling Operations. Geodetic Survey. Magnetic Survey (Annual report and Government Committee's report). Note on Scales and cost rates of Town plans. Calcutta, 1915. Price Rs. 4.
Vol. VIlI- $\left\{\begin{array}{l}\text { 1865-79 Part I } \\ \text { 1879-92 Part II }\end{array}\right\}$ Explorations in Tibet and neighbouring regions. Dehra Dūn, 1915. Price of each part Rs.4.
Vol. VIII (A)-1914-Explorations in the Eastern Kara-koram and the Upper Yärkand Valley, by Lt.-Colonel H. Wood, r.e.

Dehra Dūn 1922. Price Rs. 3.
Vol. IX-1914-1a-Topographical Survey. Triangulation. Tidal and Levelling Operations. Magnetic Survey. Criterion of strength of Indian Geodetic Triangulation. A traverse signal for City Survegs. "The plains of Northern India and theiri relationship to the Himālaya Mountains" an address by Colonel S.G. Burrard, f.r.s. Report on T'urco-Persian Frontier Commission. Calcutta, 1916. Price Rs. 4.
Vol X-1915-16-Topographical Survey. Tidal and Levelling Operations. Magnetic Survey. Mechanical Integrator for calculating Attractions (illustrated). Traverse Survey of the boundary of Imperial Delhi. Dehra Dūn, 1917. Price Rs. 4.
Vol. XI-1916-17-Topographical Survey. Triangulation-use of high trestle for stations and 100 -feet mast signals. Tidal and Levelling Operations. Magnetic Survey. Note on Basevi's Pendulum Operations at Moré. Photo-Litho Office-New method of preparing Layer plates-Developmenta and Improvements in preparing Tint-plates.

Delıra Dūn, 1918. Price Rs. 4.
Vol. XII-Notes on S'urvey of India Maps and the modern development of Indian Cartography, by Lt.-Colonel W. M. Coldstrenum, r.E., Superintendent, Map Publication. Calcutta, 1919. Price Rs. 3.

Annual Reports \&c.-(Continued).

Vol. XIII-1917-18_Topographical Survey. Tidal and Levelling Operations. Magnetic Survey. Photo-Litho offce-the Powder Process. Problem of the Himālayan and Gangetic Trough-Review by Dr. A. Morley Davies. Dehra Dūn, 1919. Price Rs. 4.
Vol. XIV-1918-19-Topographical Survey. Tidal and Levelling Operations. Levelling in Mesopotamia. Magnetic Survey.

Dehra Dūn, 1920. Price Rs. 4.
Vol. XV-1919-20-Topographical Survey. Tidal work. Levelling-proposed new level net. Magnetic Survey. The Earth's Axes and Figure, by J. de Graaff Hunter (a paper read at the R.A.S. Geophysical Meeting), Report on the expedition to Kamet. Note on the Topograply of the Nun Kun Massif in Ladāk. Dehra Dūn, 1921. Price Rs. 4.
Vol. XVI-1020-21-Topographical Survey. Tidal work. Levelling and Magnetic Survey. High Climbs in the Himalaya prior to the Everest Expedition. Mt. Everest Survey Detachment Report, 1921. 'Traverse Survey of Allahābād city. Settlement of Boundary between Mysore and South Kanara.

Dehra Dūn, 1922. Price Rs. 4.
Vol. XVII-1023-Memoir on Maps of Chinese Turkistān and Kansu from the Surveys made during Sir A. Stein's Exploratoins, 1900-01, 1906-08, 1913-15. Dehra Dūn, 1923, Price Rs. 12.
Vol. XVIII-1921-22-Topographical Survey. Tidal work. Levelling and Magnetic Survey. Traverse Survey of Allahābād city. Settlement of Boundary between Mysore and South Kanara. Notes on Revision Survey in the neighbourhood of Poona. Dehra Dūn, 1923. Price Rs. 4.
Vol. XIX-1901-20-The Magnetic Survey, by Lt.-Colonel R. H. Thomas, d.s.o , r.w., and F. C. J. Bond, v.d.

Dehra Dūu, 1925. Price Rs. 4.
Vol. XX-1914-20—The War Record. Dehra Dūn, 1925. Price Rs 3.
Vol. XXI-1929-23-24_I. Air Survey in the Irrawaddy Delta 1923-24, by Major C. G. Lewis, r.e., and
II. Reconnaissance Survey in Bhutan and South Tibet 1922, by Captain H. K. C. Meade, r.A.

Dehra Dūn, 1925. Price Rs. 1-8.
Voi. Xxit-1926-Exploration of the Shaksgam Valley and Aghil Ranges, 1926, by Major K. Mason, м.c., r.к.

Dehra Dūn, 1928. Price Rs. 3
(e) Geodetic Reports.

Vol. I-1922-25-Computations and Research. Tidal work. Time and Magnetic observations. Latitude and Pendulum observations in Bihār, Assam and Kashmir. Levelling. Lecture on "The height of Mount Everest and other Peaks".

Delıra Dūn, 1928. Price Rs. 6.
Vol. II-1925-2G; Computations and Researeh. Tidal work. Time and Magnetic observations. Preparations for the International Iongitude Project Triangulation, Levelling. Investigation of the behaviour of tree bench-marks in India.

Dehra Dūn, 1928. Price Rs. s.

Annual Reports \&c.-(Concluded).

Vol. II I-1096-97-The International Longitude Project. Computations and Publication of data Observatories. Tides. Gravity and deviation of the vertical. Triangulation. Levelling. Research and 'Techuical Notes regarding Personal Equation Apparatus and the height of Mount Everest.

Dehra Dūn, 1929. Price Rs. 3.
Vol. IV-1097-98-Computations and Publication of data. Observatories. Tites. Gruvity and deviation of the vertical. Triangulation. Levelling.

Dehra Dūn, 1929. Price Rs. з3.

PART IV.—CATALOGUES AND INSTRUCTIONS

Departmental Orders.

From 1878 to 1885 the Surveyor General's orders were all issued as "Circular Orders". Since then they have been classified as follows :From 1885 to 1904 as $\left\{\begin{array}{l}\text { 1-Government of India Orders (called "Circular } \\ \text { Orders" up to } 1898 \text {). } \\ \text { o—Departmental Orders (Administrative). } \\ \text { 3—Departmental Orders (Professional). }\end{array}\right.$

In 1904 the various orders issued since 1878 were reclassified as follows:-

Number to date.
1.-Government of India Orders. - $\quad 834$
2.-Circnlar Orders (Administrative). - 420
:.-Circular Orders (Professional). - 196
4.-Departmental Orders. (appointments, promotions, transfers, etc.)

These are numbered serially and had reached the above numbers by September 1928. Government of India Orders and Circular Orlers (Administrative) are bound up in volumes from time to time, as shown below, while Circular Orlers (Professional) are gradually incorporated in the Survey Hand-books. Besides the above, temporary orders have been issued since 1910 in the form of "Circular Memos". These either lapse or become incorporated in some more permanent form, and are therefore only numbered serially for each year. Bound volumes of orders are available as follows:-

1. *Government of India Orders (Departmental) 1878-1903.-

Calcutta, 1904.
Ditto ditto 1904-1908.-Calcuttn, 1909.
(Out of print).
Ditto ditto 1909-1913.-Calcutta, 1915.
Ditto ditto 1914-1918.-Calcutta, 1920.
2. ${ }^{*}$ Circular Orders (Administrative) 1878-1903. - Calcutta, 1904 .
Ditto ditto 1904.1908.-Calcutta, 1909.

Ditto ditto 1909-1913.-Calcutta, 1915.
Ditto ditto 1914-1918.-Calcutta, 1920.
Ditto ditto 1919-1924.-Dehra Dün, 1926.

Departmental Orders.-(Concluded)

3. *Regulations on the subject of Language Examinations for Officers of the survey of India. Calcutta, 1914.
4. Map Publication Orders 1908-1914 (Superintendent, Map Publication's Orders.)-Calcutta, 1914.
5. Specimens of papers set at Examinations for the Class II Service.—Dehra Dūn, $1927 \& 1929$. Price Re. 1 per year.

Catalogues and Lists.

1. Catalogue of Maps published by the Survey of India. Corrected. to 31st March 1928, Calcutta, 1928. Price Re. 1.
Lists of new maps published during tach month appear in the monthly NOTES OF THESURVEY OF INDIA. These monthly lists are also issued separately.
2. Catalogue of Maps of the Bombay Presidency, Calcutta, 1913. Price As. 4.
3. Catalogue of Maps of Burma.

Calcutta 1925. Price A8. 8.
4. Catalogue of Maps of Cantomments and Military stations. Dehra リūn. 1927. Price As. 8.
5. Catalogue of Books in the headquarters Library, Calcutta, 1901. (Out of print).
6. Cntalogue of Scientific Books and Subjects in the Library of the Trigonometrical Survey Office. Dehra Dūn, l909. Price Re. 1.
7. Classified Catalogue of the Trigonometrical Survey Library. Dehra Dūn, 1921.

Gratis.
8. Green Lists_Part I-List of Officers in the survey of India
(amnually to date lst January), Calcutta. P'rice Re 3.4 . Parl II-History of Services of Officers in the Survey of India (annually to date 1st July), Calcutta. Price Rs. 1-8.
9. Blue Lists-Ministerial and Lomer Subordinate Establishments of the Survey of India.

Part 1-Headquarters and Dehra Dūn offices (pub. lished amually to date last April), Calcutta.

Price Rs. 6-12.
Part II-Circles and parties (published annually to date lst January), Calcutta. Price Ris. 5.
10. List of the publications of the Survey of India (published annually) Dehra Dūn. Gratis.
11. Price List of Mathematical Instrument office. Corrected up to 1st September 192\%, Calcutta, 1928. Gratis.

Tables and Star Charts.

1. Anxiliary Tables-to facilitate the calculations of the survey of India. Fourth Elition, Dehra Dūn, 100G. (Out of print).
2. Anxiliary Tables-of the Surveg of India. Fifth Edition. (revised and extended), by .J. de (iraail Hunter, m.A., sc.d., f. inar. r. In parta-

Tables and Star Charts.-(Continued).

Part I-Graticules of Maps, (reprinted). Dehra Dūn, 1926.

Price Re. 1.
Part II-Mathematical Tables, (reprinted with addj. tions). Dehra Dūn, 1924.

Price Rs. 2.
Part II I-Topographical Survey Tables, (reprinted with additions). Dehra Dūn. $1928 . \quad$ Price Rs. 3.
3. Tables for Graticules of Maps. Extracts for the use of Explorers. Dehra Dū̀, 1918.

Price As. 4.
4. * Metric Weights and Measures and other tables. Photo-Litho Office. Calcutta, 1889. (Out of print).
5. Logarithmic Sines and Cosines to 5 places of decimals. Dehra Dün, 1886. (Uut of print).
6. Logarithmic Sines, Cosines, 'Iangents and Cotangents to 5 places of decimals. Dehra Dūn, 1915. (Out of print).
7. Common Logarithms to $\overline{5}$ places of decimals, 1885. (Out of print).
8. Table for determining Heights in Traversing. Dehra Dūn, 1898. Price ds. 8.
9. Tables of distances in Chains and Links corresponding to a subtense of 20 feet. Dehra Dūn, 1889.

Price As. 4.

10.	Ditto	ditto	10 feet.	Calcutta, 1915.
11.	Ditto	ditto	8 feet.	Ditto.

12. Field Traverse 'Tables. First Edition. Calcutta, 1928. Price A8. 8.
13. Star Charts for latitude 20° N., by Colonel J. R. Hobday, i.s.c. Calcutta, 1904. Price R8. 1.8.
14. Star Charts for latitude 30° N., by Lt.-Colonel S. G. Burrard, r.e., f.f.s. Dehra Dūn, 1906.

Price Rs. 1-8.
15. Star Charts for latitude 15° N. Dehra Dūn, 1928. Price Rs. 2.
16. Star Charts for latitude $30^{\circ} \mathrm{N}$. Dehra Dūn, 1928. Price Re. 2.
17. Catalogue of 249 Stars for epoch 1st Jan. 1892, from observations by the Survey, Dehra Dūn, 1893.

Price Rs. 2.
18. *Rainfall, maximum and minimum temperatures, from 1868 to 1927, recorded at the Survey Office Observatory, Dehra Dūn, 1928.

Old Manuals.

1. A Manual of Surveying for India, detailing the mode of operations on the Revenue Surveys in Bengal, and the North-Western Provinces. Compiled by Captains R. Smyth, and H. L. Thuillier. Calcutta, 1851. (Out of print).
2. Ditto Second Edition. London, 1855. (Ont of print).
3. A Manual of Surveying for India, detailing the mode of operations on the Trigononetrical, Topographical and Revenue Surveys of India. Compiled by Colonel H. L. Thuillier, c.s.i, f.n.s., and Lt..-Colonel R. Smyth. Third Erlition, revised and enlarged. Calcutta, 1sis. (Ont of print).
4. Hand-Book, Revenue Brauch. Calcutta, 1893. Price Rs. 2-8.

Survey of India Hand-Books.

1. * Hand-Book of General Instructions, (in 2 vols.) Fifth Edition. 1927.
2. Hand-Book, Trigonometrical Branch, Second Edition. Calcutta, 1902. (Out of print).
3. Hand-Book of Trigonometrical Instructions.-Third Edition. Parts in pamphlet forms-

Part V-The Tides. Third Edition, revised, Dehra Dūn 1926. Price Rs. 2.
Part VI-Levelling. Third Editiou, revised, Dehra Dūn, 1928. Price Re. 1.
4. Hand-Book, Topographical Branch,-Third Edition. Calcutta, 1905. (Out of print).
5. Hand-Book of Topography.-Fourth Edition. Calcutta, 1911. Chapters, in pamphlet forms-

Chapter I-Introductory.-reprinted with additions, 1921.
Price A8. 8.
, 1I—Constitution and Orgauization of a Survey Party. —reprinted with additions, 1923. Price As. 8. III—Triangulation and its Computation.-revised 1923. Price Re. 1. IV-Theodolite Traversing-Third Edition, 1927.

Price Re. 1.
V-Plane-tabling.-Third Edition, 1926. Price Re. 1.
" VI-Fair Mapping.-reprinted with additions and revised, (Sixth Edition) $1928 . \quad$ Price Re. 1.
Chapter VII-Forest Surveys and Rectangulation (old Chapter 1X) revised, $1925 . \quad$ Price As. 8.
, VIII-Surveys in war and Traus-frontier Reconnaissance (old Chapters VII and VIII). Under preparation.
," IX—Geographical Maps (old Chapter XI). Second Edition, $1926 . \quad$ Price As. 8.
X-Map Reproduction. Second Edition, 1919.
6. *Photo-Litho 0ffice, Notes on Organization, Methods and Processes, by Major W. C. Hedley, r.e. Mhird Edition. Calcutta, 1924.
7. The Reproduction (for the guidance of other Departments), of Maps, Plans, Photographs, Diagrams, and Line Illustrations. Calcutta, 1914. Price Rs. ${ }^{3}$.
8. Survey of India Copy Book of Lettering. Calcutta.

Price Rs. 3-8.

Notes and Instructions.

Drawing and paper.

1. *Notes on Printing Papers suitable for Maps, and on Whatman Drawing Paper, by Major W. M. Coldstream, r.e. Calcutta, 1911. (Out of print).
[^11]
Notes and Instructions.-(Continued).

Printing and Field Litho processes.

2. *Report on Rubber Offset Printing for Maps, by Major W. M. Coldstream, r.e. Calcutta, 1911.
3. "Notes on the "Vandyke" or Direct Zinc Printing Process, with details of Apparatus and Chemicals required for a small section. Compiled in the Photo and Litho Office, Survey of India. Calcutta, 1913.
(Out of print)
4. * Notes on some of the Methods of Map Reproduction suitable for the Field with appendix-Suggested Equipment Tables for the Light Field Litho. Press (experimental), by Lieut. A. A. Chase, r.E. Calcutta, 1911.
5. *Report on a trial of the equipment of the 1st (Prince of Wales' Own) Sappers and Miners, for reproducing maps in the field, by Lieut. A. A. Chase, r.e. Calcutta, 1912. (Out of print).

Base Lines and Magnetic.

6. *Notes on use of the Jäderin Base line Apparatus. Debra Dùn 1904. (Out of print).
7. *Miscellaneous Papers relating to the Measurement of Geodetic Bases by Jäderin Invar Apparatus. Dehra Dūn, 1912.
8. *Instructions for taking Magnetic Observations, by J. Eccles, m. a. Dehra Dūn. 1896. (Out of print).
9. Rectangular Co-ordinates.-On a Simplification of the Computations relating to, by J. Eccles, m. a. Dehra Dün, 1911.

Price Re. 1.
10. *For Explorers. - Notes on the use of Thermometers, Barometers and Hypsometers with Tables for the Computation of Heights, by J. de Graatf Hunter, m.a. Dehra Dūn, 1911. (Out of print).
11. *Amended Instructions for the Survey and Mapping of Town Guide Maps. August 1919

12 *Notes on boundary ribands on maps of the Survey of India, by Major F. Fraser Hunter, d.s.o., I.a. Calculta, 1922.
13. *Notes on the map of Arabia and the Persian Gulf, with a general index of place names on the map, 1905-08, by Captain F, Fraser Hunter, 1.A. Calcutta, 1910 .
14. Accounts Pamphlet. - Notes on account for field units. Dehra Dūn, 1928.

Price Re. 1 .

PART V.—MISCELLANEOUS PAPERS

Unclassified Papers.

Geography.

1. A Sketch of the Geographr and Geology of the Himàlaya Mountainsand Tibet (in four parts), by Colonels. G. Burrard, r.e., f.r.s., Supdt., 'l'rignometrical Surveys and H. It. Layden, b.a., f.a.s., Supdt, Geological Survey of India. Caleutta, 1907-0)s.

Part I.-The High Peaks of Asia.
" II.-The Principal Mountain Ranges of Asia. Price Rs. 2.
", III.-The Rivers of the Himālaya and Tibet. $\quad \int$ per part
", IV.-The (tenlogy of the Himälaya.
, IV.-The tenlogy of the Himalaya.
2 *Report on the Identification and Nomenclature of the Himalayan Peaksas seen from Kätmändu, Nepäl, by Captain H. Wood, r.e. Calcutta, 1904.

[^12]
Unclassified Papers.-(Continued).

3. Routes in the Western-Himālaya, Kashmīr, etc., by Lt.Colonel T. G. Montgomerie, r.e., f.r.s., f.r.g.s. Dehra Dūn, 1909. (Out of print).
4. Routes in the Western-Himālaya, Kashmir, etc. with which are included Montgomerie's Routes. Volume I. Pūnch, Kashmīr and Ladākh, by Major Mason, m.c., r.e., First Edition, Dehra Dūn, 1923. Price Rs. 6. Exploration.
5. *Account of the Survey Operations in connection with the Mission to Yärkand and Kashgar in 1873-74, by Captain Heury Trotter, r.e. Calcutta, 1875. (Out of print).
6. Report on the 'lrans-Himālayan Explorations during 1869. (Out of print).
7. Report on the Trans-Himālayau Explorations during 1870. Dehra Dūn, 1871. (Out of print).
8. Report on the Trans-Himālayan Explorations during 1878. Calcutta, 1880. (Out of print).

§pecial Reports.

1. *Report on the Mussoorie and Landour, Kumaun and Garhwāl, Rāuīkhet and Kosi Valley Surveys, extended to Peshāwar and Käghān Triangulation during 1869-70, by Major 'I' G. Montgomerie, r.e. (Out of print).
2. Report on the Recent Determination of the Longitude of Madras, by Captain S. G. Burrard, r.e. Calcutta, 1897. (Out of print).
3. *Report on the Observations of the 'lotal Solar Eclipse of 6th April, 1875 at Camorta, Nicobar Islands, by Captain J. Waterhouse. Calcutta, 1875. (Out of print).
4. *'The T'otal Solar Eclipse, 22nd January, 1898. Dehra Dūu, 1898.
(1) Report on the observations at Dumranu.
(2) Report on the observatious at Pulgaon.
(3) Keport on the observations at Sahdol.
5. *Report on Local Attraction in India, 1893-9\&, by Captain S. G. Burrard, r.e. Calcutta, 1895. (Out of print).
6. *Report on the Trigonometrical Results of the Earthquake in Assam, by Captain S. G. Burrard, re.e. Calcutta, 1898. (Out of print).
7. *Notes on the Topographical Survey of the $1 / 50,000$ sheets of Algeria by the Topographical Section of the "Service Geographique de l'Armée", by Captain W. M. Coldstream, r.e. Calcutta, 1906.
8. "The Simla Estates Boundary Survey on the scale of 50 feet to 1 inch, by Captain E. A. Tandy, r.e. Calculta, 1906.
9. *A note on the stase reached by the Geodetic Operations of the Survey of India iu 1920, by Lt.Colonol İ. Mc: C. Cowie, k.e. 'Tho Magnetic Survey of India, by Major R. H. Thomas, msso., k.I. and a note on the present levelling policy, by Major Ǩ. Mason, m.c., r.e. Dehra Dūn, 1922. (()ut of print).
Geodesy.
10. Notes on the Theory of Errors of Obscrvation, by J. Eecles, m.a. Dehra Dūn, 190:3.

Price As. 8 .

* For Departmental use only.

Unclassifled Papers.-(Concluded).

2. Fote on a Change of the Axes of the Terrestrial Spheroid in relation to the 'Iriangulation of the G.'T. Survey of India, by J. de Graaff Hunter, m.A. Dehra Dūn. (Out of print), now incorporated in Professional Paper No. 16.
3. Report on the Treatment, and use of Invar in measuring Geodetic Bases. by Captain H. H. Turner, r.E. London, $1907 . \quad$ Price As. 8.

Projections.

1. On the projection used for the General Maps of India. Dehra Dūn, 1903. (Out of print).
2. *On the deformation resulting from the method of constructing the International Atlas of the World on the scale of one to one million, by Ch. Lallemand. Translated by J. Eccles, m.a., together with tables for the projection of $1 / \mathrm{M}$ Maps on the International system. Dehra Dūn, 1912. (Out of print).

Mapping.

1. *A Note on the different methods by which hills can be represented upon maps, by Colonel S. G. Burrard, c.s.I., r.e., f.r.s., Survejor General of India. Simla, I912.
2. *A Note on the representation of hills, by Major C. L. Robertson, c.m.a., r.e. Dehra Dūn, 1912.
3. *A Note on the representation of hills on the Maps of India, by Major F. W. Pirrie, r.A. Dehra Dūn, 1912.
4. *A consideration of the Contour intervals, and Colour Scales, best suited to Indian 1/M maps, by Captain M.O'C. Tandy, r.E. Calcutta, 1913. (Out of print).

Professional Papers.

No. 1-Projection-On the Projection for a Map of India, and adjacent Countries, on the scale of $1: 1,000,000$, by Colonel st. G. C. Gore, u.e. Second Edition. Dehra Dūn, 1903.

Price Re. 1.
No. 2 *Base Lines_Method of measuring Geodetic Bases by means of Metallic Wires, by M. Jäderin. (Translated from Memoires Prèsentēs par Divers. Savants ā l'Acadēmie des Sciences de l' Institute de France). Dehrin Dūn, 1899. (Ont of print).

No. 3-Base Lines-Method of measuring Geodetic Bases by means of Colby's Compensated Bars, compiled by Lieut. H. McC. Cowie, r.E. Dehra Dūn, 1900. (Out of print).

No. 4-Spirit levels-Notes on the Calibration of Levels, by Lieut. E. A. I'andy, r.e. Dehra Dūu, 1300. (Out of print).

No. 5-Geodesy-The Attraction of the Himalaya Mountains upon the Plumb-Line in India, considerations of recent data, by Major S. G. Burrard, r.e. Second Edition, Dehra Dūn, 1901. Price Rs. 2.

No. G-Base Lines-Account of a Determination of the Cocfficients of Expansion of the Wires of the Jäderin Base Line Apparatus, by Captain G. P. Lenox-Conyngham, r.e. Dehra Dūn, 1902, (Out of print).

[^13]
Professional Papers.-(Continued).

No. 7- Miscellaneons. Calcutta, 1903.
(1) On the values of Longitude employed in maps of the Survey of India.
(2) Levelling across the Ganges at Dämuizdia.
(3) Experiment to test the increase in the length of a levelling staff due to moisture and temperature.
(4) Description of a Sun-dial designed for use with tide-gauges.
(5) Nickel-steel alloys and their application to Geodesy. (Translated from the French).
(6) Theory of electric projectors. (Translated from the French).

No 8-Magnetic-Experiments made to determine the temperature coeffcients of Watson's Magnetographs, by Captain H. A. Denholm Fraser, r.e. Calcutta, 1905.

Price Re. 1.
No. 9-Gcodesy-An Account of the Scientific work of the Survey of India. and a Comparison of its progress with that of Foreign Surveys. Prepared for the use of the Survey Committee assembled in 1905, by Lt.-Colonel S. G. Burrard, r.e., f.r.s. Calcutta, 1905. Price Re. 1

No. 10-Pendulums-The Pendulum Operations in India. 1903-1907, by Major G. P. Lenox-Conyngham, r.e. Dehra Dūn, 1908. Price Rs. 2-8.

No 11-Refraction-Observations of A tmospheric Refraction, 1905-09, by H. G. Shaw, Survey of India. Dehra Dūn, 1911. (Out of print).

No. 12-Geodesy-On the Origin of the Himalara Mountains, by Colonel S. G. Burrard, c.s.i., r.e., f.n.s. Calcutta, 1912. Price Re. 1.

No. 13-Isostasy-Investigation of the Theory of Isostasy in India, by Major H. L. Crosthwait, n.e. Dehra Dün, 1912. (Out of print).

No 14-Refraction-Formulæ for Atmospheric Refraction, and their application to Terrestrial Refraction and Geodesy, by J. de Graaff Hunter, m.a. Dehra Dūn, 1913. Price Rs. 2.
No. 15-Pendulums-The Pendulum Operations in India and Burma, 1909-18, by Captain II. J. Couchman, ree. Dehra Dūn, 1915. Price Re. 2.8.

No. 16—Geodesy-The Earth's A xes and I'riangulation, by J. de Graaff IIunter, m. a. Dehra Dūn, 1918. Price Rs. 4.
No. 17-Isostasy-Investigations of Isostasy in Himālayan and neighbouring regions by Colonel Sir S. G. Burrard, f.c.s.i., r.e., f.f.s. Delira Dūn, 1918. (Out of print).

No. 18-Isostasy-A criticison of Mr. R. D. Oltham's memoir "The structure of the Himalayas and of the Gangetic Plain", by L.t.-('olonel H. McC. Cowie, r.e. Dehra Dūn, $1921 . \quad$ Price Rs, 1.8.

No. 19-Aerial Photography-Experiments in Aeroplane Photo Surveying, by Major C. (. Lewis, r. .., and Captain H. G. Salmond. (Tate r.a.F.). Delıra Dūn, 1920. Price Rs. 1-8.
No. 20-Air Survey- Recomaissance Survey from Aircraft, by J.t.-Colonel (子. A. Beazeley, d.s.o., R.E. Dehra Dūn, 1927. Price Rs. 1-8.

No. 21-Rectangulation-Irrigation and Settlement, Surveys 1026; by Major J. D. Campbell, d.s.o., r.e. Dehra Dū॥ 1927. Price Rs. 1-8.

No. 22-Levelling-'Three Sources of Error in precise Levelling, by Captain G. Bomford, ree. Dehra Dūn, $1929 . \quad$ Price Rs. 1.8.

[^14]
Professional Papers.-(Continued).

No. 23-* Air Survey-Air Survey of Wazīristān 1923 to 1928, by Captain G. F. Heaney, r.e. Dehra lū̄n, $1928 . \quad$ Price As. 8.

No. 24-Air Survey-Notes on Air Survey in India, by Major W.J. Norman, m.c., r.e. Dehra Dūn, 1929.

Price Rs. 1.8.
No. 25-Glaciers -'The Representation of Glaciated Regions on maps of the Survey of India, by Major Kenneth Mason, m.c., r.в. Dehra Düu, 1929. Price As. 8.
No. 26-Projection_The Lambert Conical Orthomorphic Projection, by Lt.-Colonel C. M. Thompson, i.s. Dehra Dūn, 1929. (Provisional Issue).

Departmental Papers Series. \dagger

No. 1-Type-A consideration of the most suitable forms of type for use on maps, by Captain M. O'C. T'andy, r.e. Dehra Dūn, 1913.

No. 2-Symbols-A review of the Boundary Symbols used on the maps of various countries, by Captain M.O'C. Tandy, n.E. Dehra Dūn, 1913.

No. 3-Mnps-Extract from "The New Map of Italy, Scale 1: 100,000 ", by Luigi Giannitrapani. Translated from the Italian by Major W. M. Coldstream, r.e. Dehra Dūn, 1913.

No. 4-Town Surveys-A report on the practice of Town Surveys in the United Kingdom and its application to India, by Major C. L. Robertson, c.m.g., r.e Dehra Dūn. 1913.

No. 5-Stereo-plotter-The Thompson Stereo-plotter and its use, with notes on the field work, by Lieut. K. Mason, r.e. Dehra Dūn, 1913.

No. 6-Levelling-Levelling of High Precision, by Ch. Lallemand. Translated from the French by J. de Graaff Hunter, m.a. Dehra Dūn, 1914.

No. 7-.Standard Bars-Bar Comparisons of 1907-08, by Major H. McC. Cowie, r.e. Dehra Dūn, 1915.

No. 8-Mclio-Zincography-Report on Rubber Off-set Flat bed Machine Printing, by Captain S. W. Sackville Hamilton, n.e. Calcutta, 1915.

No. 9-Stereo-Auto-Plotting - A translation of Paul Corbin's French Stérén Autogrammétrie, by Lt.-Colonel H. McC. Cowie, r.e. Dehra Dūn. 1922.

No. 10-Base Lines-A Booklet of Instructions with full descriptions and tables for The Hunter Short Base, compiled by Major C. M. Thompson, I.A. Wehra Dūu, $19: 8$.

No. 11-Gravity and Isostasy-Investigations regarding Gravity and Isostasy by W. Heiskanen (Translated by V. Pelta lisq. Revised and completed by Major C. M. Thompson, in.) Dehra Dūn, 1928.

No 12-(iendesy-Georlesy, by Dr. J. de Graaff Hunter, m.a., sc.d., f. inst. p. Delıra Dūn, 1929.

No. 1:-Npherical Trigonometry and Astronomy-Notes on Spherical Trigonometry, and Astronomy, ete, by Lt.-Colonel C. M. Thompson, i.a. Dehra lūn, 1029.

Professional Forms.

A large number of forms for the record and reduction of Survey Operations are stocked at Dehra Dūn.

[^15]List of more important contributions by the Officers of the Surver of India to various extra-departmental publications and related articles.

1. *India's Contribution to Geodesy, by General J. T. Walker, r.e., c.b., f.r.s., LL.d. (Philosophical Transactions, Royal Society. Series a, Volume 186, 1895).
2. * On the Intensity and Direction of the Force of Gravity in Indin, by Lt.-Colonel S. G. Burrard, r.e, f.r.s. (Philosophical Transactions, Royal Society, Series A, Volume 205, pages 289-318, 1905).
3. tA climb on Kolahoi, by Lieut. Kenneth Mason, r.e. (Royal Engineers Journal, November 1910).
4. *On the effect of the Gangetic Allavium on the Plumb-iine in Northern India, by R. D. Oldham, f.in.s (Proceedings of the Royal Society, Series A, Volume 90, pages 32-40, 1914).
5. *On the origin of the Indo-Gangetic trough, commonly called the Himālayan Foredeep, by Colonel Sir S. G. Burrard, к.c.s.i., r.e., f.r.s. (Proceedings of the Koyal Society, Series A, Volume 91, pages 220.238, 1915).
6. §Three comprehensive articles on "Comparators for the Indian Government" from a report by Major H. McC. Cowie, r.E. (lingineering, Aug. 20, Aug. 27, Sept. 3, 1915).
7. ||Identification of Peaks in the Himālaya with notes, by Colonel Sir S. G. Burrard, к.c.s.i., r.e., f.n.s. (Geographical Journal, September 1918).
8. \|Geological interpretations of Geodetic Results, by Colonel Sir S. G. Burrard, m.c.s.i., r.E., f.r.s. (Geographical Journal, October 1918).
9. \|War Surveys in Mesopotamia, by Colonel F. W. Pirrie, c.m.g. 1.A. (Geographical Journal, December 1918).
10. \|Air Photography in A rchæology, by Lt. Colonel G. A. Btazeley, d.s.o., n.E. (Geoyraphical Journal, May 1919).
11. ||Mapping from Air Photographs, by Lt.Colonel M. N. MacLeod, r.e. (Geographical Journal, June 1919).
12. \|Reminiscences of the Map of Arabia and Persian Gulf, by lt.-Colonel F. F. Hunter, d s.o., I.A. (Geographical Journal, December 1919).
13. ||Central Kurdistan, by Major K. Mason, m.c., r.e. (Geographical Journal, December 1919).
14. ||Surveys in Mesopotamia during the War, by Lt-Colonel (i. A. Beazeley, d.s.o., r.e. (Geographical Journal, February 1920).
15. \ddagger A lecture on the Earth's Axes and Figure, by J. de Granff Hunter, m.a. ('I'he Observatory. May 1920).

* Obtainable from Messrs Dulan \& Cu., 37, Soho Square, London, W., or Mesars. Harrison \& Sods, St. Martin's Lane, London, or the Royal Society at Burlington Honse, Lundon.
+ Ohmimble from the lotitution of Royal Engineers, Chatham.
§ Obtainable from Charles Robert Johnson at the oftices of "Engincering", 35 and 36 , Bedford Strect Strand, London, W.C.
|| Obtuinable from the Royul Geographicai Society. Kensington Goro, London. S.W. 7.
+ Obtainable from Messrs Taylor \& Francis, Red Lion Conrt. Fleet Strect Loindon, W.C.

List of more important contributions by the Offleers of

 the Surver of India \&c. \&c.-(Continued).16. *A brief review of the evidence upon which the Thenry of Isostasy has been based, by Colonel Sir S. G. Burrard, k.c.s i., r.e., f.r.s. (Geographical Journal, July 1920).
17. *A note on the topography of the NunKun Massif in Ladākh, by Major K. Mason, m.c.. r.e. (Geographical Journal, August 1920).
18. *Notes on the Canal System and Ancient Sites of Babylonia in the time of Xenophon, by Major K. Mison, m.c., e.e. (Geographical Jourmal. December 1920).
19. \ddagger An Exploration in South-East Tibet, by Major H. 'T. Morshead, d.s.o., re. (Royal Engineers Journal, January 1921).
20. \ddagger Topographical Air Survey (with plates and maps), by Lt.-Colonel G. A. Beazeley, d.s.o., r.e. (Royal Engineers Juurnal, February 1921).
21. \ddagger Projection of Maps.-A review of some lnvestigations in the Theory of Map Projections, by A. E. Young, and Colonel Sir S. G. Burrard, k.c.s.i., R.e., f.r.s. (Royal Engineers Journal, March 1921).
22. \pm Report on Expedition to Kamet, 1920, by Major H. T. Morshead d.s.o., r.e. (Royal Engineers Journal, April 1921).
23. *The Circulation of the Ear'th's Crust. by Lt.-Colonel E. A. Tandy, re. (Geographical Journal, May 1921).
24. §.Johuson's Suppressed Ascent on E 61, by Major K. Mason, m.c., i.e (Alpine Journal, November 1921).
25. *Stereographic Survey. 'The Autocartograph, by Lt.-Colonel M. N. MacLeod, d.s.o., r.e. (Gengraphical Journal, April 1922).
26. \ddagger The "Canadian" photo toporraphical method of Survey, br Captain and Bt. Mujor E. O. Wheeler, m.c., n.e. (Royil Engineers Journal, A pril 1922).
27. §The Survey of Mr. W. H. Johnson in the K'un Lun in 1865. by Major K. Masou, m.c., r.e. (Alpine Journal, November 1922).
28. \|Gravity Survey, by J. de Graaff Hunter, M.A., sc.d., F. inst. p. (A Dictionary of Applied Physics, Vol. III).
29. ||Trigonometrical Heights and Atmospheric Refraction, by J. de Graaff Hunter, ma., sc.d., f. inst. p. (A Dictionary of applied Physics, Vol. III).
30. Gendesy, by Colonel Sir G. P. Lenox-Conyngham, Kt., r.e.. f.r.s. and J. de Grataf Huinter, m.A., sc.d., F. inst. P. (Enc. Brit. 12th Edition. Vol. XXXI, 1922).
31. *The proposed Determination of Primary Longitudes by International Co-operation, by Colonel Sir G. P. Lenox-Conyngham, Kt., r.E., f.r.s. (Geographical Journal, February 1923).

* Obtainable from the Royal Geographical Society, Kensington Gore, London, S.W. 7.
\ddagger Obtainable from the Institution of Royal Engineers, Chatham.
§ Obtrinable from Alpine Clab, 23 savile Row. London, W. I.
$\|$ Ohtninable from Messrs MacMillan \& Co. Limited., St. Martin's Street..
London. W.C., Bombay, Calcutta, Madras, Melbourne.

List of more important contributions bv the Officers of

 the Survey of India \&c. \&c.-(Continued).32. + Recent Developments of Air Photography.-(1) The adjustment of Air Photographs to Survey points, by Lt.-Colonel M. N. MacLeod, d.s.o., B.E. (Geographical Journal, June 1923).
33. \ddagger Mount Everest, by Major H. T. Morshead, d.s.o., r.e. (Koyal Eugineers Journal, September 1923).
34. †Kishen Singh and the Indian Explorers, by Major K. Mason m.c., r.e. (Geographical Journal, December 1923).
35. §Electrical registration of height of water at any time in Tidal Prediction, by J. de Graaff Hunter, m.A., sc.d., f. inst. P. (Journal of Scientific Instruments, Vol. I, No. 8, May 1924).
36. \|Graphical methods of plotting from Air Photographs, by Lt.-Colonel L. N. F. I. King, o.b.e., r.e.

37 the Demarcation of the Turco-Persian Boundary in 1913-14, by Colonel C. H. D. Ryder, r.e. (Geographical Journal. September 1925).
38. Geodesy, by J. de Graaff Hunter, m.A., sc.d., f. inst. p. (Enc. Brit. 13th Edition, New Vol. ii, 1926).
39. TThe De Filippi Expedition to the Eastern Kara-koram, by B. B. D. and Colonel Sir G. P. Lenox-Conyngham, Kt., r.e., f.r.s., m.a. (Nature, 13th February 1926).

40். †'the Problem of the Shaksgam Valley, by Colonel Sir Francis Younghusband, к c.s.i., к.c.I.e. (Geographical Journal, September 1926),
41. †The Shaksgam Valley and Aghil Range, by Major K. Mason, m.c., R.e. (Geographical Journal, April 1927).
42. A Break-Circuit for Pendulum Clocks. by J. de Graaff Hunter, m.a.. sc.d., f. inst. p. (Bulletin Géodésique No, 14, April, May, June 1927, Paris).
43. tA Graphical Discussion of the Figure of the Earth, by A.R. Hinks, c.b.e., f.r.s. (Geographical Journal, June 1927).
44. \ddagger Survey on Active Service, by Captain G. F. Heaney, R.e. (Royal Engineers Journal, June 1927).
45. A Report on the Geodetic work of the Survey of India for the period 1924-27, by J. de Graaff Hunter, m.a., sc.d., f. inst. p., presented at the third meeting of the International Union of Geodesy and Geophysics, Prague, September 1927.
46. †The Stereographic Survey of the Shaksgam, by Major K. Mason, m.c. r.e. (Geographical Journal, October 1927).
47. †Figure of the Earth : correspondence by J. de Graaff Hunter, m.A., sc.d., F. inst. P. (Gengraphical Journal, December 1927).
48. †Figure of the Earth : correspondence by Captain G. Bomford, r.r. (Geographical Journal, December 1927).

8.w. 7.

\dagger Obtainable from the Royal Geographical Society, Kensington Gore, London,
\ddagger Obtainable from the Institutlon of Royal Engincers, Chatinnm.
§ Obtainable from the Institute of Pbysics, 90 Grent Russol Street, London
W.C. 1.
|| Obtainable from H.M. Stationary office, Adastral Honse, Kinggway, London
W.C. 2, 29, Abingdon Street, London, S.W.
© Obtainable from the office of Nature, St. Martin's Street, London, W.c. e.

List of more important contributions by the Offleers of the Survey of India \&c. \&cc.-(Concluded).

49. + Keply to Captain G. Bomford's letter on Figure of the Farth (No. 48 of list), by Captain G. 'T'. McCaw and A. R. Hinks, c.b.e., f.r.b. ((Yeographical Journal, December 1927).
50. Figure of the Earth-Presidential address by J. de Graaff Hunter, m.a., se.v. r. inst. P., at the Section of Mathematics and Physics of the Hifteenth Indian Science Congress, Calcutta 1928 (Published by the Asiatic Society of Bengal, Calcutta).
51. +Note on Sir Francis Younghusband's Urdok Glacier, by Major Kenneth Muson, m.c., r.f. (Geographical Jourual, March 1928).
52. \ddagger Nome Applications of the Geoid by J. de Graaff Hunter, m.a., se.d., f. inst. f. (The Observatory, June 1928).

[^16](ieod. Br. P.O. - 450 - 1929 .

INDEX TO THE TRIANGULATION PAMPHLETS
IRAQ, PERSIA \& AFGHANISTAN
Corrected to 31 st. July 1929.

Key to Sheet lettering Indian Sheet.

A	E	I	M
B	F	J	N
C	G	K	O
D	H	L	P

MELIO.S.I.O. DEHRA DÚN
To accompany GeodeticReport Vol, IV.

Internationsl Sheet.					
A	B	C	D	E	F
O	H	I	J	K	L
M	N	O	P	Q	R
S	T	U	V	W	X

In this aystem each numbered sheet (e.g. 2) overs an area of 4° in latitude by $4{ }^{\circ} \mathrm{in}$ longitude. The degree sheets are designated thus 2 A

In this system each numbered sheet (e.g. J.37) covers an area of 4 in latitude by 6 in longitude The degree sheats are designated thus $\frac{\text { North J.37 }}{8}$
.

[^0]: * Vixcluding No. 2 D.O.. Publication and Stores, F.M. O., mud 20 Parts.

[^1]: Acrepted valne derived from the International Longitude Project is $5122^{10} 11 \cdot 79$

[^2]: * Derired from the actnal difference between the value for any hour and the general mean for ali hours for the six months.

 the month. \quad ming mala
 Fignres in thick type indicate the maximam and minimam values of the hourly deviation.

[^3]: - E_{1} is with regard to sign : E_{2} is without regard to siga.

[^4]: - F_{1} is with regard to sign: E_{g} is without regard to sign.

[^5]: * E_{1} is with regard to sign : E_{2} is without regard to sign.

[^6]: * E_{1} is with regard to sign: E_{2} is without regard to sign.

[^7]: * Fïle Vol, III International Geodetic Report 1:926.

[^8]: * Rerial numbers in Lino 5s I، (Daur to Bändhi).
 \dagger Proisvional numbers in Linc 101 A (Snkkur to Hyderābãd).

[^9]: *Serial nambers in Line 52 L (Daur to Bāndbi).

[^10]: * Publications detailed in Parts III, IV and V are also obtainable from the Officer in charge, Map Record and Issue Office, 13, Wood Street, Calcutta.

[^11]: * Por Departinental ase only.

[^12]: * For Lepartmental use only.

[^13]: * For Departmental use only.

[^14]: * For Departmental use only.

[^15]: - For Official nee only. \dagger For Departmental use only.

[^16]: + Obtmanble from the Royal Geographical Society, Kensington Gore, London, S.W. 7.
 \ddagger Obtainable from Messrs Thylor and Francis, Red Lion Court, Fleet Street, honden. W.C.

